18.定積分${∫}_{\frac{π}{4}}^{\frac{9π}{4}}$$\sqrt{2}$cos(2x+$\frac{π}{4}$)dx的值為( 。
A.1B.-1C.0D.2

分析 根據(jù)${∫}_{\frac{π}{4}}^{\frac{9π}{4}}$$\sqrt{2}$cos(2x+$\frac{π}{4}$)dx=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$) ${|}_{\frac{π}{4}}^{\frac{9π}{4}}$,計算求得結(jié)果.

解答 解:${∫}_{\frac{π}{4}}^{\frac{9π}{4}}$$\sqrt{2}$cos(2x+$\frac{π}{4}$)dx=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$) ${|}_{\frac{π}{4}}^{\frac{9π}{4}}$
=($\frac{\sqrt{2}}{2}$sin$\frac{19π}{4}$-$\frac{\sqrt{2}}{2}$sin$\frac{3π}{4}$)=$\frac{\sqrt{2}}{2}$•$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$•$\frac{\sqrt{2}}{2}$=0,
故選:C.

點評 本題主要考查定積分的運算,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.在如圖所示的正方形中隨機投擲10 000個點,則落入陰影部分(曲線C為正態(tài)分布N(-1,1)的密度曲線)的點的個數(shù)的估計值為(  )
附:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
A.1 193B.1 359C.2 718D.3 413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在△ABC中,若∠C=90°,AC=b,BC=a,則△ABC的外接圓的半徑r=$\frac{\sqrt{{a}^{2}+^{2}}}{2}$,把上面的結(jié)論推廣到空間,空間中有三條側(cè)棱兩兩垂直的四面體A-BCD,且AB=a,AC=b,AD=c,則此三棱錐的外接球的半徑r=$\sqrt{\frac{{a}^{2}+^{2}+{c}^{2}}{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD為菱形,∠BAD=60°,P為AB的中點,Q為CD1的中點.
(1)求證:DP⊥平面A1ABB1;
(2)求證:PQ∥平面ADD1A1
(3)若E為CC1的中點,能否在CP上找一點F,使得EF∥面DPQ?并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=a|x+1|在區(qū)間(-1,+∞)上為增函數(shù),則g(x)=$\frac{sinx}{lo{g}_{a}(x+2)}$的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.下列四種說法中,正確的個數(shù)有②③
①命題“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
②“命題P∨Q為真”是“命題P∧Q為真”的必要不充分條件;
③?m∈R,使f(x)=m${x^{{m^2}+2m}}$是冪函數(shù),且在(0,+∞)上是單調(diào)遞增;
④不過原點(0,0)的直線方程都可以表示成$\frac{x}{a}+\frac{y}$=1;
⑤在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性越強.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{16}x+\frac{1}{4}{a}^{2},x≥0}\\{{x}^{2}+({a}^{2}-4a+3)x+(3-a)^{2},x<0}\end{array}\right.$,若對任意非零實數(shù)x1,存在唯一實數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則實數(shù)a的值為2或6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點分分別為F1,F(xiàn)2,|F1F2|=2$\sqrt{3}$,長軸長為4,P是橢圓C上任意一點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的取值范圍;
(Ⅲ)設(shè)橢圓的左、右頂點分別為A,B,直線PA交直線l:x=4于點M,連接MB,直線MB與橢圓C的另一個交點為Q.試判斷直線PQ是否過定點,若是,求出定點坐標;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(其中θ為參數(shù)),點P(-1,0),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線C2的極坐標方程為ρcosθ-ρsinθ+1=0.
(1)分別寫出曲線C1的普通方程與直線C2的參數(shù)方程;
(2)若曲線C1與直線C2交于A,B兩點,求|PA|•|PB|.

查看答案和解析>>

同步練習冊答案