【題目】已知函數(shù)f(x)= ﹣kx2(k∈R)有四個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(
A.k<0
B.k<1
C.0<k<1
D.k>1

【答案】D
【解析】解:分別畫(huà)出y= 與y=kx2的圖象如圖所示,當(dāng)k<0時(shí),y=kx2的開(kāi)口向下,此時(shí)與y= 只有一個(gè)交點(diǎn),顯然不符合題意,
當(dāng)k=0時(shí),此時(shí)與y= 只有一個(gè)交點(diǎn),顯然不符合題意,
當(dāng)k>0時(shí),x≥0時(shí),
f(x)= ﹣kx2=0,
即kx3+2k2﹣x=0,
即x(kx2+2kx﹣1)=0,即x=0,或kx2+2kx﹣1=0,
此時(shí)有唯一的解,即△=4k2+4k=0,解得k=﹣1(舍去),
當(dāng)k>0時(shí),x<0時(shí),
f(x)= ﹣kx2=0,
即kx3+2k2+x=0,
kx2+2kx+1=0,
此時(shí)有兩個(gè)解,即△=4k2﹣4k>0,解得k>1,
綜上所述k>1
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布Nμσ2),且PμXμ)=0.954 4,PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知P(x0 , y0)是橢圓C: =1上一點(diǎn),過(guò)原點(diǎn)的斜率分別為k1 , k2的兩條直線與圓(x﹣x02+(y﹣y02= 均相切,且交橢圓于A,B兩點(diǎn).

(1)求證:k1k2=﹣
(2)求|OA||OB|得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A. 命題x24x30,則x3”的逆否命題是:x≠3,則x24x3≠0”

B. “x>1”“|x|>0”的充分不必要條件

C. pq為假命題,則p、q均為假命題

D. 命題p“x0∈R使得x01<0”,則p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1的左頂點(diǎn)為A(﹣3,0),左焦點(diǎn)恰為圓x2+2x+y2+m=0(m∈R)的圓心M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)A且與圓M相切于點(diǎn)B的直線,交橢圓C于點(diǎn)P,P與橢圓C右焦點(diǎn)的連線交橢圓于Q,若三點(diǎn)B,M,Q共線,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,(其中).

(1)時(shí),求函數(shù)的極值;

(2)證:存在,使得內(nèi)恒成立,且方程內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)如果對(duì)于任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為(

A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求證:AB⊥DE;
(Ⅱ)求直線EC與平面ABE所成角的正弦值;
(Ⅲ)線段EA上是否存在點(diǎn)F,使EC∥平面FBD?若存在,求出 ;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案