(本小題滿分16分)通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時間:講授開始時,學(xué)生的興趣激增;中間有一段不太長的時間,學(xué)生的興趣保持較理想的狀態(tài);隨后學(xué)生的注意力開始分散.分析結(jié)果和實驗表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受的能力越強),x表示提出和講授概念的時間(單位:min),可有以下的公式:
(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
(1)(2)開始后5分鐘(3)略
(1)當(dāng)是增函數(shù),
; 3分是減函數(shù),且.所以,講課開始后10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘. ……6分
(2),故講課開始25分鐘時,學(xué)生的注意力比講課開始后5分鐘更集中.
(3)當(dāng)時,;當(dāng),
,則學(xué)生注意力在180以上所持續(xù)的時間28.57-4=24.5>24,所以,經(jīng)過適當(dāng)安排,老師可以在學(xué)生達(dá)到所需要的狀態(tài)下講授完這道題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義在R上的函數(shù)滿足,且對任意的均成立,(1)求證:函數(shù)在R上為減函數(shù)(2)求實數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,設(shè)點是單位圓上的一定點,動點從點出發(fā)在圓上按逆時針方向旋轉(zhuǎn)一周,點所旋轉(zhuǎn)過的弧的長為,弦的長為,則函數(shù)的圖像大致是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖1,當(dāng)參數(shù)時,連續(xù)函數(shù) 的圖像分別對應(yīng)曲線 , 則(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是周期為2的奇函數(shù),當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
某工廠為了提高經(jīng)濟效益,決定花5600千元引進新技術(shù),同時適當(dāng)進行裁員.已知這家公司現(xiàn)有職工人,每人每年可創(chuàng)利100千元.據(jù)測算,若裁員人數(shù)不超過現(xiàn)有人數(shù)的20%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利1千元;若裁員人數(shù)超過現(xiàn)有人數(shù)的20%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利2千元.為保證公司的正常運轉(zhuǎn),留崗的員工數(shù)不得少于現(xiàn)有員工人數(shù)的75%.為保障被裁員工的生活,公司要付給被裁員工每人每年20千元的生活費.
(1)若m=400時,要使公司利潤至少增加10%,那么公司裁員人數(shù)應(yīng)在什么范圍內(nèi)?
(2)若15<<50,為了獲得最大的經(jīng)濟效益,該公司應(yīng)裁員多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)的圖象過點(2,1),則函數(shù)的圖象一定過點(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域為                  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,,,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案