分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化求解即可.
解答 解:∵奇函數(shù)f(x)定義在(-1,1)上,且在定義域上單調(diào)遞減,
∴不等式f(1-a)+f(2a)<0等價(jià)為f(2a)<-f(1-a)=f(a-1),
即$\left\{\begin{array}{l}{-1<2a<1}\\{-1<a-1<1}\\{2a>a-1}\end{array}\right.$,即$\left\{\begin{array}{l}{-\frac{1}{2}<a<\frac{1}{2}}\\{0<a<2}\\{a>-1}\end{array}\right.$,解得0<a<$\frac{1}{2}$,
故答案為:(0,$\frac{1}{2}$)
點(diǎn)評 本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.注意定義域的限制作用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 4 | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=2,y=1,z=$\frac{3}{2}$ | B. | x=1,y=$\frac{1}{2}$,z=$\frac{1}{2}$ | C. | x=$\frac{1}{2}$,y=$\frac{1}{2}$,z=1 | D. | x=$\frac{1}{2}$,y=$\frac{1}{2}$,z=$\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com