【題目】某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,在過濾過程中,污染物的數(shù)量p(單位:毫克/升)不斷減少,已知p與時(shí)間t(單位:小時(shí))滿足p(t)=,其中p0t=0時(shí)的污染物數(shù)量.又測(cè)得當(dāng)t∈[0,30]時(shí),污染物數(shù)量的變化率是-10ln 2,則p(60)=(  )

A.150毫克/升B.300毫克/升

C.150ln 2毫克/升D.300ln 2毫克/升

【答案】C

【解析】

由當(dāng)時(shí),污染物數(shù)量的變化率是,求出,再利用關(guān)系式,可求 的值.

選C 因?yàn)楫?dāng)t∈[0,30]時(shí),污染物數(shù)量的變化率是-10ln 2,所以-10ln 2=,所以p0=600ln 2,因?yàn)?/span>p(t)=,所以p(60)=600ln 2×2-2=150ln 2(毫克/升).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定數(shù)列,若滿足),對(duì)于任意的,都有,則稱數(shù)列為“指數(shù)型數(shù)列”.

1)已知數(shù)列的通項(xiàng)公式為,試判斷數(shù)列是不是“指數(shù)型數(shù)列”;

2)已知數(shù)列滿足,證明數(shù)列為等比數(shù)列,并判斷數(shù)列是否為“指數(shù)型數(shù)列”,若是給出證明,若不是說明理由;

3)若數(shù)列是“指數(shù)型數(shù)列”,且,證明數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

是偶函數(shù);②在區(qū)間單調(diào)遞減;

個(gè)零點(diǎn);④的最大值為.

其中所有正確結(jié)論的編號(hào)是(

A.①②④B.②④C.①④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的左、右兩個(gè)焦點(diǎn)分別為設(shè),若為正三角形且周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過點(diǎn)且斜率為的直線與橢圓相交于不同的兩點(diǎn),是否存在實(shí)數(shù)使成立,若存在,求出的值,若不存在,請(qǐng)說明理由;

(3)若過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)兩點(diǎn),記的面積記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若直線與圓相切,求被圓所截得弦長(zhǎng)取最小值時(shí)直線的斜率;

2時(shí),表示圓,問是否存在一條直線,使得它和所有的圓都沒有公共點(diǎn)?如果存在,求出直線,若不存在,說明理由;

3)若滿足不等式和等式的點(diǎn)集是一條線段,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足.

1)若,求數(shù)列的通項(xiàng)公式;

2)若且數(shù)列為公比不為1的等比數(shù)列,求q的值,使數(shù)列也是等比數(shù)列;

3)若,數(shù)列有最大值M與最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的中心在原點(diǎn),、為左、右焦點(diǎn),焦距是實(shí)軸長(zhǎng)的倍,雙曲線過點(diǎn).

1)求雙曲線的標(biāo)準(zhǔn)方程;

2)若點(diǎn)在雙曲線上,求證:點(diǎn)在以為直徑的圓上;

3)在(2)的條件下,若直線交雙曲線于另一點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共有編號(hào)分別為1,2,3,4,5的五個(gè)座位,在甲同學(xué)不坐2號(hào)座位,乙同學(xué)不坐5號(hào)座位的條件下,甲、乙兩位同學(xué)的座位號(hào)相加是偶數(shù)的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左,右焦點(diǎn)分別為,且與短軸的一個(gè)端點(diǎn)Q構(gòu)成一個(gè)等腰直角三角形,點(diǎn)P)在橢圓上,過點(diǎn)作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓AB,CDM,N分別是弦AB,CD的中點(diǎn)

(1)求橢圓的方程

(2)求證:直線MN過定點(diǎn)R

(3)面積的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案