【題目】已知數(shù)列與滿足.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若且數(shù)列為公比不為1的等比數(shù)列,求q的值,使數(shù)列也是等比數(shù)列;
(3)若且,數(shù)列有最大值M與最小值,求的取值范圍.
【答案】(1) (2) (3)
【解析】
(1)代入已知條件,即可得到數(shù)列為等差數(shù)列,可求通項(xiàng)公式。
(2)利用迭代,用含的式子表示,根據(jù)為等比數(shù)列,求出的值。
(3)利用累加法可證單調(diào)遞增且單調(diào)遞減即可得到數(shù)列的最大項(xiàng)與最小項(xiàng),即結(jié)合即可求出的取值范圍。
解:(1)由且得,所以數(shù)列為等差數(shù)列.
又,所以:
(2)由條件可知,
所以
不妨設(shè)的公比為,則,
由是等比數(shù)列知:可求出
經(jīng)檢驗(yàn),,此時(shí)是等比數(shù)列,所以滿足條件:
(3)由條件可知,
所以
即,
,因?yàn)?/span>,
所以,則單調(diào)遞增
,則單調(diào)遞減;
又,所以數(shù)列的最大項(xiàng)為,
所以數(shù)列的最小項(xiàng)為.
則,
因?yàn)?/span>,所以,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù)).
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,關(guān)于的方程有且僅有一個(gè)根, 求實(shí)數(shù)的取值范圍;
(3)若對(duì)任意,不等式均成立, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).(是自然對(duì)數(shù)的底數(shù),)
(1)討論的單調(diào)性,并證明有且僅有兩個(gè)零點(diǎn);
(2)設(shè)是的一個(gè)零點(diǎn),證明曲線在點(diǎn)處的切線也是曲線的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,為中點(diǎn).
(1)求證:平面;
(2)若點(diǎn)是棱的中點(diǎn),求異面直線與的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,在過(guò)濾過(guò)程中,污染物的數(shù)量p(單位:毫克/升)不斷減少,已知p與時(shí)間t(單位:小時(shí))滿足p(t)=,其中p0為t=0時(shí)的污染物數(shù)量.又測(cè)得當(dāng)t∈[0,30]時(shí),污染物數(shù)量的變化率是-10ln 2,則p(60)=( )
A.150毫克/升B.300毫克/升
C.150ln 2毫克/升D.300ln 2毫克/升
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,,記.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),若函數(shù)沒(méi)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班隨機(jī)抽查了20名學(xué)生的數(shù)學(xué)成績(jī),分?jǐn)?shù)制成如圖的莖葉圖,其中A組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間不足1個(gè)小時(shí),B組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間達(dá)到一個(gè)小時(shí)。學(xué)校規(guī)定90分及90分以上記為優(yōu)秀,75分及75分以上記為達(dá)標(biāo),75分以下記為未達(dá)標(biāo).
(1)分別求出A、B兩組學(xué)生的平均分、并估計(jì)全班的數(shù)學(xué)平均分;
(2)現(xiàn)在從成績(jī)優(yōu)秀的學(xué)生中任意抽取2人,求這兩人恰好都來(lái)自B組的概率;
(3)根據(jù)成績(jī)得到如下列聯(lián)表:
①直接寫(xiě)出表中的值;
②判斷是否有的把握認(rèn)為“數(shù)學(xué)成績(jī)達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).
參考公式與臨界值表:K2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為,將的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,有下列叫個(gè)結(jié)論:
在單調(diào)遞增; 為奇函數(shù);
的圖象關(guān)于直線對(duì)稱; 在的值域?yàn)?/span>.
其中正確的結(jié)論是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且,對(duì)任意實(shí)數(shù),成立.
(1)求函數(shù)的解析式;
(2)若,解關(guān)于的不等式;
(3)求最大的使得存在,只需,就有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com