10.設(shè)函數(shù)y=f(x)在[-3,3]上是奇函數(shù),且對任意x,y都有f(x+y)=f(x)+f(y),當(dāng)x>0時,f(x)<0,f(1)=-2:
(Ⅰ)求f(2)的值;
(Ⅱ)判斷f(x)的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)求不等式f(x-1)>4的解集.

分析 (Ⅰ)在f(x+y)=f(x)+f(y)中,令x=y=1,即可得出.
(Ⅱ)結(jié)論:函數(shù)f(x)在[-3,3]上是單調(diào)遞減的,如下:任取-3≤x1<x2≤3,f(x2)-f(x1)=f(x2-x1)<0,即可判斷出結(jié)論.
(Ⅲ)由于f(2)=-4,不等式f(x-1)>4等價于f(x-1)>-f(2)=f(-2),又根據(jù)函數(shù)f(x)在[-3,3]上是單調(diào)遞減,即可得出.

解答 解:(Ⅰ)在f(x+y)=f(x)+f(y)中,令x=y=1得:f(2)=f(1)+f(1)=2f(1)=-4.
(Ⅱ)結(jié)論:函數(shù)f(x)在[-3,3]上是單調(diào)遞減的,證明如下:
任取-3≤x1<x2≤3,
則f(x2)-f(x1)=f(x1+x2-x1)-f(x1)=f(x1)+f(x2-x1)-f(x1)=f(x2-x1),
∵x1<x2,x2-x1>0,f(x2-x1)<0,即f(x2)<f(x1),
故函數(shù)f(x)在[-3,3]上是單調(diào)遞減.
(Ⅲ)由于f(2)=-4,
∴不等式f(x-1)>4等價于f(x-1)>-f(2)=f(-2),
又∵函數(shù)f(x)在[-3,3]上是單調(diào)遞減,
∴$\left\{\begin{array}{l}{-3≤x-1≤3}\\{x-<-2}\end{array}\right.$,解得-2≤x<-1,
故原不等式的解集為[-2,-1).

點(diǎn)評 本題考查了抽象函數(shù)的奇偶性單調(diào)性、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法不正確的是( 。
A.若“p且q”為假,則p,q至少有一個是假命題
B.命題“?x∈R,x2-x-1<0”的否定是““?x∈R,x2-x-1≥0”
C.設(shè)A,B是兩個集合,則“A⊆B”是“A∩B=A”的充分不必要條件
D.當(dāng)a<0時,冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若a1=1,數(shù)列{${\frac{a_n}{n}}\right.$}是公差為2的等差數(shù)列,則an=2n2-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,已知AB=2,AC=3,A=60°.
(1)求△ABC的面積;
(2)求BC的長;
(3)求Sin2C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若y=f(x)是定義在R上的函數(shù),f(x+2)=f(x),當(dāng)0≤x≤2時,f(x)=4x+$\frac{3}{x}$,則f(3)=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,已知tanA=$\frac{1}{2}$,cosB=$\frac{3\sqrt{10}}{10}$,若△ABC最長邊為$\sqrt{10}$,則最短邊長為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線3x+my-3=0與6x+4y+1=0互相平行,則它們之間的距離是(  )
A.4B.$\frac{2\sqrt{13}}{13}$C.$\frac{5\sqrt{13}}{26}$D.$\frac{7\sqrt{13}}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a=5${\;}^{{{log}_3}3.4}}$,b=5${\;}^{{{log}_4}3.6}}$,c=(${\frac{1}{5}}$)${\;}^{{{log}_3}0.3}}$,則( 。
A.a>c>bB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=x2-2kx+1在區(qū)間[1,3]上是增函數(shù),則實(shí)數(shù)k的取值范圍為(-∞,1].

查看答案和解析>>

同步練習(xí)冊答案