(2006•浦東新區(qū)一模)z為一元二次方程x2-2x+2=0的根,且 Imz<0.
(1)求復(fù)數(shù)z;
(2)若實數(shù)a滿足不等式log2
|z-ai|
a2+1
1
2
,求a的取值范圍.
分析:(1)解方程可得方程的兩個根為1±i,由Imz<0可得z=1-i.
(2)解對數(shù)不等式可得:
|z-ai|
a2+1
2
,即可得到:1+(a+1)2≤2(a2+1),解得a≤0或 a≥2,進而得到a的范圍.
解答:解:(1)由題意可得:方程x2-2x+2=0的兩個根為1±i(3分)
又因為 Imz<0,
所以z=1-i(4分)
(2)由log2
|z-ai|
a2+1
1
2
得:
|z-ai|
a2+1
2
,(6分)
因為z=1-i,
所以可得:1+(a+1)2≤2(a2+1),(9分)
整理可得:a2-2a≥0,
解得a≤0或 a≥2,
所以a的取值范圍是a≤0或 a≥2(12分)
點評:本題主要考查復(fù)數(shù)的求模公式,以及對數(shù)函數(shù)的單調(diào)性與特殊點,此題綜合性較強,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•浦東新區(qū)一模)函數(shù)y=a|x-1|,(0<a<1)的圖象為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•浦東新區(qū)一模)右面是某次測驗成績統(tǒng)計表中的部分數(shù)據(jù).
學(xué)校 文科均分 理科均分
學(xué)校A 101.4 103.2
學(xué)校B 101.5 103.4
某甲說:B校文理平均分都比A校高,全體學(xué)生的平均分肯定比A校的高.
某乙說:兩個學(xué)校文理的平均分不一樣,全體學(xué)生的平均分可以相等.
某丙說:A校全體學(xué)生的均分可以比B校的高.
你同意他們的觀點嗎?我不同意
的觀點,請舉例
設(shè)x、y分別為A、B兩校文科學(xué)生所占比例,滿足y≥
18
19
x+
2
19
,即可以推翻甲的結(jié)論.比如:x=0.1,y=0.2,則兩校全體學(xué)生均分相等.
設(shè)x、y分別為A、B兩校文科學(xué)生所占比例,滿足y≥
18
19
x+
2
19
,即可以推翻甲的結(jié)論.比如:x=0.1,y=0.2,則兩校全體學(xué)生均分相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•浦東新區(qū)模擬)已知函數(shù)f(x)=x2-2ax+a的定義域為(1,+∞),且存在最小值-2;(1)求實數(shù)a的值;(2)令g(x)=
f(x)x
,求函數(shù)y=g(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•浦東新區(qū)模擬)
lim
n→∞
(
1
2
+
1
4
+…+
1
2n
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•浦東新區(qū)模擬)計算:(1+i)2=
2i
2i

查看答案和解析>>

同步練習(xí)冊答案