15.如圖,在三棱錐V-ABC中,VA=VB=VC=2$\sqrt{3}$,∠AVB=∠BVC=∠CVA=40°,過A作截面AEF分別交VB,VC于點(diǎn)E,F(xiàn),求△AEF周長(zhǎng)的最小值.

分析 沿著側(cè)棱VA把正三棱錐V-ABC展開在一個(gè)平面內(nèi),如圖,則AA′即為截面△AEF周長(zhǎng)的最小值,且∠AVA′=3×40°=120°.△VAA′中,由余弦定理可得 AA'的值.

解答 解:如圖所示:沿著側(cè)棱VA把正三棱錐V-ABC展開在一個(gè)平面內(nèi),如圖(2),
則AA′即為截面△AEF周長(zhǎng)的最小值,且∠AVA′=3×40°=120°.
△VAA′中,由余弦定理,得
 AA'=$\sqrt{V{A}^{2}+A′{V}^{2}-2VA•A′Vcos120°}$=$\sqrt{12+12-2×2\sqrt{3}×2\sqrt{2}×(-\frac{1}{2})}$=6.
故答案為:6.

點(diǎn)評(píng) 本題主要考查余弦定理的應(yīng)用,棱錐的結(jié)構(gòu)特征,利用棱錐的側(cè)面展開圖研究幾條線段和的最小值問題,是一種重要的解題方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知A是拋物線C:y2=2px(p>0)上一個(gè)動(dòng)點(diǎn),且點(diǎn)A到直線l:x-2y+13=0的最短距離是$\sqrt{5}$,過直線l上一點(diǎn)B(3,8)作拋物線C的兩條切線,M,N為切點(diǎn).
(Ⅰ)求拋物線C的方程;
(Ⅱ)求$\overrightarrow{BM}$•$\overrightarrow{BN}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓O:x2+y2=r2(r>0),與y軸交于M、N兩點(diǎn)且M在N的上方.且直線y=2x+$\sqrt{5}$與圓O相切.
(1)求實(shí)數(shù)r的值;   
(2)若動(dòng)點(diǎn)P滿足PM=$\sqrt{3}$PN,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某單位的春節(jié)聯(lián)歡活動(dòng),組織了一次幸運(yùn)抽獎(jiǎng)活動(dòng),袋中裝有5個(gè)除顏色外,大小、質(zhì)地均相同的小球,其中2個(gè)紅球,3個(gè)白球,抽獎(jiǎng)?wù)邚闹幸淮蚊?個(gè)小球,摸取后放回,摸到2個(gè)紅球得一等獎(jiǎng),1個(gè)紅球得二等獎(jiǎng),甲、乙兩人各抽獎(jiǎng)一次,則甲得一等獎(jiǎng)且乙得二等獎(jiǎng)的概率為$\frac{3}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a∈R,函數(shù)f(x)=log2($\frac{1}{x}$+a),若關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰有一個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的通項(xiàng)公式an=2n+2(n∈N*
(1)求a2,a5;
(2)若a2,a5恰好是等比數(shù)列{bn}的第2項(xiàng)和第3項(xiàng),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}的通項(xiàng)公式為an=n2-2n,則a4=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若線性方程組的增廣矩陣為$(\begin{array}{l}{a}&{0}&{2}\\{0}&{1}&\end{array})$,解為$\left\{{\begin{array}{l}{x=2}\\{y=1}\end{array}}\right.$,則a+b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-$\frac{a}{x}({a∈R})$.
(1)若f(x)在[1,e]的最小值為$\frac{3}{2}$,求a的值;
(2)若f(x)<x+a在x∈(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案