已知兩圓C1:x2+y2=10,C2:x2+y2+2x+2y-14=0.求經(jīng)過兩圓交點的公共弦所在的直線方程
 
分析:聯(lián)立兩圓的方程,消去x與y的平方項,即可得到經(jīng)過兩圓交點的公共弦所在直線的方程.
解答:解:聯(lián)立兩圓的方程得:
x2+y2=10①
x2+y2+2x+2y-14=0②
,
②-①得:
2x+2y-14=-10,即x+y-2=0.
所以經(jīng)過兩圓交點的公共弦所在的直線方程為x+y-2=0.
故答案為:x+y-2=0
點評:此題考查學生掌握圓與圓的位置關系及判定,是一道中檔題.本題的突破點是聯(lián)立兩圓方程消去x與y的平方項.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

11、已知兩圓C1:x2+y2+D1x+E1y+3=0和C2:x2+y2+D2x+E2y+3=0都過點A(1,1),則經(jīng)過兩點(D1,E1)、(D2,E2)的直線方程為
x+y+5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•河東區(qū)二模)已知兩圓C1:x2+y2-2x=0,C2:(x+1)2+y2=4的圓心分別為C1,C2,P為一個動點,且|PC1|+|PC2|=2
2

(1)求動點P的軌跡M的方程;
(2)是否存在過點A(2,0)的直線l與軌跡M交于不同的兩點C、D,使得|C1C|=|C1D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩圓C1x2+y2+D1x+E1y-3=0C2x2+y2+D2x+E2y-3=0都過點E(3,4),則經(jīng)過兩點(D1,E1)、(D2,E2)的直線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩圓C1:x2+y2-2x+10y-24=0,C2:x2+y2+2y-8=0,則以兩圓公共弦為直徑的圓的方程是
(x+2)2+(y-1)2=5
(x+2)2+(y-1)2=5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩圓C1x2+y2-2x+10y-24=0,C2x2+y2+2x+2y-8=0,則它們的公共弦所在的直線方程為
 

查看答案和解析>>

同步練習冊答案