【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若函數(shù)存在唯一的零點,且,則的取值范圍.
【答案】(1) 函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2) .
【解析】
(1)先求得函數(shù)的導(dǎo)數(shù),然后利用導(dǎo)數(shù)的正負(fù)求出函數(shù)的單調(diào)區(qū)間.(2)先令,得,構(gòu)造函數(shù),對分成三類,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)存在唯一的零點,且,列不等式,解不等式求得的取值范圍.
(1),
令,解得.
當(dāng)時,;當(dāng)時,.
故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(2)令,可得,令,且,
本題等價于函數(shù)存在唯一的零點,且 .
當(dāng)時,,解得,函數(shù)有兩個零點,不符合題意,
當(dāng)時,,令,解得或,
當(dāng)時,函數(shù) 在上單調(diào)遞增,在上單調(diào)遞減,
又,又,,所以函數(shù)存在負(fù)數(shù)零點,不符合題意
當(dāng)時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
又,故,解得 ,
綜上,的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知平面,為等邊三角形,,,與平面所成角的正切值為.
(Ⅰ)證明:平面;
(Ⅱ)若是的中點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費,若超過15次,超過部分的軟件服務(wù)每次收費標(biāo)準(zhǔn)為20元.
(1)設(shè)日收費為元,每天軟件服務(wù)的次數(shù)為,試寫出兩種方案中與的函數(shù)關(guān)系式;
(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個命題:其中所有正確命題的序號是_________.
①函數(shù)的最小正周期為;
②在中,若,則一定是鈍角三角形;
③函數(shù)且的圖象必經(jīng)過點(3,2);
④若命題“”是假命題,則實數(shù)的取值范圍為;
⑤的圖象向左平移個單位,所得圖象關(guān)于軸對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動這些金片:每次只能移動一片金片;每次移動的金片必須套在某根針上;大片不能疊在小片上面.設(shè)移完n片金片總共需要的次數(shù)為an,可推得a1=1,an+1=2an+1.如圖是求移動次數(shù)在1000次以上的最小片數(shù)的程序框圖模型,則輸出的結(jié)果是( 。
A. 8B. 9C. 10D. 11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一環(huán)保型企業(yè),為了節(jié)約成本擬進行生產(chǎn)改造,現(xiàn)將某種產(chǎn)品產(chǎn)量與單位成本統(tǒng)計數(shù)據(jù)如下:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
產(chǎn)量(千件) | 2 | 3 | 4 | 5 | 4 | 5 |
單位成本(元/件) | 73 | 72 | 71 | 73 | 69 | 68 |
(Ⅰ)試確定回歸方程;
(Ⅱ)指出產(chǎn)量每增加1000件時,單位成本平均下降多少?
(Ⅲ)假定單位成本為70元/件時,產(chǎn)量應(yīng)為多少件?
(參考公式:.)
(參考數(shù)據(jù) )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點,長軸在軸上,上頂點為,左右焦點分別為,線段,的中點分別為,且是面積為4的直角三角形,過作直線交橢圓于兩點,使,則直線的斜率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足:,.
(Ⅰ)求的通項公式及前項和;
(Ⅱ)若等差數(shù)列滿足, ,問:與的第幾項相等?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com