【題目】設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(x)為偶函數(shù),且在(0,1)上存在極大值,則f′(x)的圖象可能為( 。
A.
B.
C.
D.

【答案】C
【解析】解:根據(jù)題意,若f(x)為偶函數(shù),則其導(dǎo)數(shù)f′(x)為奇函數(shù),

分析選項:可以排除B、D,

又由函數(shù)f(x)在(0,1)上存在極大值,則其導(dǎo)數(shù)圖象在(0,1)上存在零點,且零點左側(cè)導(dǎo)數(shù)值符號為正,右側(cè)導(dǎo)數(shù)值符號為負(fù),

分析選項:可以排除A,C符合;

所以答案是:C.

【考點精析】本題主要考查了函數(shù)的圖象的相關(guān)知識點,需要掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點組成;圖像上每一點坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 若an=﹣3Sn+4,bn=﹣log2an+1
(Ⅰ)求數(shù)列{an}的通項公式與數(shù)列{bn}的通項公式;
(Ⅱ)令cn= + ,其中n∈N*,若數(shù)列{cn}的前n項和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是: ,則算籌式 表示的數(shù)字為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,△PAD為正三角形,平面PAD⊥平面ABCD,E為AD的中點,AB∥CD,AB⊥AD,CD=2AB=2AD=4.

(Ⅰ)求證:平面PCD⊥平面PAD;
(Ⅱ)求直線PB與平面PCD所成角的正弦值;
(Ⅲ)在棱CD上是否存在點M,使得AM⊥平面PBE?若存在,求出 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn , 數(shù)列{bn}是等比數(shù)列,滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn=anbn , 設(shè)數(shù)列{cn}的前n項和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟的一種新形態(tài).一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進行調(diào)查研究,在調(diào)查過程中進行了統(tǒng)計,得出相關(guān)數(shù)據(jù)見下表:

租用單車數(shù)量x(千輛)

2

3

4

5

8

每天一輛車平均成本y(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: (1)= +1.1,方程乙: (2)= +1.6.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.1)(備注: =yi , 稱為相應(yīng)于點(xi , yi)的殘差(也叫隨機誤差);

租用單車數(shù)量x(千輛)

2

3

4

5

8

每天一輛車平均成本y(元)

3.2

2.4

2

1.9

1.7

模型甲

估計值 (1)

2.4

2.1

1.6

殘差 (1)

0

﹣0.1

0.1

模型乙

估計值 (2)

2.3

2

1.9

殘差 (2)

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和Q1及Q2 , 并通過比較Q1 , Q2的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入﹣成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,拋物線C的頂點在原點,以x軸為對稱軸,且經(jīng)過點P(1,2).設(shè)點A,B在拋物線C上,直線PA,PB分別與y軸交于點M,N,|PM|=|PN|,則直線AB的斜率大小是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(1)若當(dāng) 時,函數(shù) 的圖象恒在直線 上方,求實數(shù) 的取值范圍;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c,d都是常數(shù),a>b,c>d.若f(x)=2 017-(x-a)(x-b)的零點為c,d,則下列不等式正確的是( )
A.a>c>b>d
B.a>b>c>d
C.c>d>a>b
D.c>a>b>d

查看答案和解析>>

同步練習(xí)冊答案