【題目】已知函數(shù)yf1x),yf2x),定義函數(shù)fx

1)設函數(shù)f1x)=x+3,f2x)=x2x,求函數(shù)yfx)的解析式;

2)在(1)的條件下,gx)=mx+2mR),函數(shù)hx)=fx)﹣gx)有三個不同的零點,求實數(shù)m的取值范圍;

3)設函數(shù)f1x)=x22,f2x)=|xa|,函數(shù)Fx)=f1x+f2x),求函數(shù)Fx)的最小值.

【答案】1;(2;(3

【解析】

1)根據(jù)函數(shù)fx的定義,兩個函數(shù)中取小的.

2)函數(shù)hx)=fx)﹣gx)有三個不同的零點,即方程fx)=gx)有三個不同的實數(shù)根,因為函數(shù) 是分段函數(shù),分類討論,分別用一次方程和二次方程求解.

3)根據(jù)題意Fx.按照二次函數(shù)函數(shù)定區(qū)間動的類型,討論對稱軸與區(qū)間端點值間的關系求最值.

1)∵f1x)=x+3,

f1xf2x),即x≥3x1時,fx)=x+3,

f1x)>f2x),即﹣1x3時,,

綜上:

2)函數(shù)hx)=fx)﹣gx)有三個不同的零點,

即方程fx)=gx)有三個不同的實數(shù)根,

因為函數(shù),函數(shù)gx)=mx+2mR),

所以當x1x≥3時,mx+2x+3恰有一個實數(shù)解,

所以,

解得,

當﹣1x3時,mx+2x2x恰有兩個不同的實數(shù)解,

即當﹣1x3x2﹣(m+1x2=0恰有兩個不同的實數(shù)解,

設函數(shù)hx)=x2﹣(m+1x2,

由題意可得

所以,

解得,

綜上,m的取值范圍為

3Fx)=f1x+f2x)=x2+|xa|2

①若a,則函數(shù)Fx)在上是單調減函數(shù),在上是單調增函數(shù),

此時,函數(shù)Fx)的最小值為;

②若,則函數(shù)Fx)在(﹣,a)上是單調減函數(shù),在(a,+∞)上是單調增函數(shù),

此時,函數(shù)Fx)的最小值為Fa)=a22;

③若,則函數(shù)Fx)在上是單調減函數(shù),在上是單調增函數(shù),

此時,函數(shù)Fx)的最小值為;

綜上:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:

①若直線平行于平面內的無數(shù)條直線,則;

②若直線在平面外,則

③若直線,直線平面,則;

④若直線,直線平面,則直線平行于平面內的無數(shù)條直線.

其中正確說法的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中有一分鹿問題:今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問各得幾何.在這個問題中,大夫、不更、簪裊、上造、公士是古代五個不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成3組派去三地執(zhí)行公務(每地至少去1人),則不同的方案有( )種.

A.150B.180C.240D.300

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)yfx),若在其定義域內存在x0,使得x0fx0)=1成立,則稱函數(shù)fx)具有性質M

1)下列函數(shù)中具有性質M的有____

fx)=﹣x+2

fx)=sinxx[0,2π]

fx)=x,(x∈(0,+∞))

fx

2)若函數(shù)fx)=a|x2|1)(x[1+∞))具有性質M,則實數(shù)a的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量2sinx,cosx),cosx,2cosx).

1)若xkπkZ,且,求2sin2xcos2x的值;

2)定義函數(shù)fx,求函數(shù)fx)的單調遞減區(qū)間;并求當x[0]時,函數(shù)fx)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年中秋季到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對其所在銷售范圍內的1000名消費者在中秋節(jié)期間的月餅購買量(單位:)進行了問卷調查,得到如下頻率分布直方圖:

(1)求頻率分布直方圖中的值;

(2)已知該超市所在銷售范圍內有20萬人,并且該超市每年的銷售份額約占該市場總量的,請根據(jù)人均月餅購買量估計該超市應準備多少噸月餅恰好能滿足市場需求?

(3)由頻率分布直方圖可以認為,該銷售范圍內消費者的月餅購買量服從正態(tài)分布,其中樣本平均數(shù)作為的估計值,樣本標準差作為的估計值,設表示從該銷售范圍內的消費者中隨機抽取10名,其月餅購買量位于的人數(shù),求的數(shù)學期望.

附:經計算得,若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近期,某學校舉行了一次體育知識競賽,并對競賽成績進行分組:成績不低于80分的學生為甲組,成績低于80分的學生為乙組.為了分析競賽成績與性別是否有關,現(xiàn)隨機抽取了60名學生的成績進行分析,數(shù)據(jù)如下圖所示的列聯(lián)表.

甲組

乙組

合計

男生

3

女生

13

合計

40

60

1)將列聯(lián)表補充完整,判斷是否有的把握認為學生按成績分組與性別有關?

2)如果用分層抽樣的方法從甲組和乙組中抽取6人,再從這6人中隨機抽取2人,求至少有1人在甲組的概率.

附:.

參考數(shù)據(jù)及公式:

0.100

0.050

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著我國經濟的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2014

2015

2016

2017

2018

年份代號

1

2

3

4

5

人均純收入

5

6

7

8

10

1)求關于的線性回歸方程;

2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農村居民家庭人均純收入的變化情況,并預測2020年該地區(qū)農村居民家庭人均純收入約為多少千元?

附:回歸直線的斜率和截距的最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心為原點,長軸在軸上,左頂點為,上、下焦點分別為,線段的中點分別為,且是斜邊長為的直角三角形.

(1)若點在橢圓上,且為銳角,求的取值范圍;

(2)過點作直線交橢圓于點,且,求直線的方程.

查看答案和解析>>

同步練習冊答案