(1)已知x>0,y>0,且
1
x
+
9
y
=2,求x+y的最小值.
(2)已知x,y∈R+,且滿足
x
3
+
y
4
=1,求xy的最大值.
(3)若對任意x<1,
x2+3
x-1
≤a
恒成立,求a的取值范圍.
(1)由題意得:x+y=
1
2
(x+y)(
1
x
+
9
y
)=5+
1
2
y
x
+
9x
y

y
x
+
9x
y
≥2
y
x
9x
y
=6------------------(3分)
∴x+y=5+
1
2
y
x
+
9x
y
)≥5+
1
2
×6
=8,當且僅當x=2,y=6時等號成立
即x+y的最小值是8--------------------------(4分)
(2)因為x、y為正數(shù),所以1=
x
3
+
y
4
≥2
x
3
y
4
=2
xy
12

所以
xy
12
1
2
,平方得xy≤3-------------------------------(7分)
∴當且僅當x=
3
2
,y=2時,xy的最大值為3-------------------------(8分)
(3)不等式
x2+3
x-1
≤a
,即
x2+3
-x+1
≥-a

整理,得(1-x)+
4
1-x
≥2-a
∵x<1,得1-x>0為正數(shù)
∴(1-x)+
4
1-x
≥2
(1-x)•
4
1-x
=4
即當且僅當1-x=2,即x=-1時,(1-x)+
4
1-x
的最小值為4
因此若對任意x<1,
x2+3
x-1
≤a
恒成立,即4≥2-a,解之得a≥-2
所以a的取值范圍為[-2,+∞)-----------------------------(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

一批救災物資隨17列火車以v千米/小時的速度勻速直達400千米以外的災區(qū).為了安全起見,兩列火車的間距不得小于(
v
20
2千米,問這批物資全部運到災區(qū)最少需要______小時(火車的長度忽略不計)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文科)某工廠要建造一個長方體的無蓋貯水池,其容積為4800m3,深為3m,如果池底造價為每平方米150元,池壁每平方米造價為120元,怎么設計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設a,b∈R且a+b=2,則3a+3b的最小值是( 。
A.6B.2
3
C.2D.9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓柱的體積為16π cm3,則當?shù)酌姘霃絩=______cm時,圓柱的表面積最。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知x>0,y>0且x+y=1則
4
x
+
9
y
的最小值為( 。
A.6B.12C.25D.36

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

有一種變壓器,鐵芯的截面是正十字形(如圖),為保證所需的磁通量,要求正十字形的面積為4
5
cm2
,為了使用來繞鐵芯的銅線最省(即正十字形的外接圓周長最短).應如何設計正十字形的長和寬?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

利用基本不等式求最值,下列運用正確的是( 。
A.y=|x|2+
4
|x|
≥2
|x|2
4
|x|
=4
|x|
≥0
B.y=sinx+
4
sinx
≥2
sinx•
4
sinx
=4(x為銳角)
C.已知ab≠0,
a
b
+
b
a
≥2
a
b
b
a
=2
D.y=3x+
4
3x
≥2
3x
4
3x
=4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點A(a,1)與點B(a+1,3)位于直線x-y+1=0的兩側,則a的取值范圍是           .

查看答案和解析>>

同步練習冊答案