【題目】(1)已知扇形的周長為8,面積是4,求扇形的圓心角.

(2)已知扇形的周長為40,當(dāng)它的半徑和圓心角取何值時,才使扇形的面積最大?

【答案】(1)2;(2)當(dāng)半徑為10圓心角為2時,扇形的面積最大,最大值為100

【解析】

(1)設(shè)扇形的圓心角大小為,半徑為,根據(jù)扇形周長公式和扇形面積公式,列出等式,聯(lián)立求出扇形的圓心角;

(2)設(shè)扇形的半徑和弧長分別為,通過扇形的周長為40,可以得到等式,這樣可以用表示,用的代數(shù)式表示出扇形的面積,利用二次函數(shù)的性質(zhì),求出當(dāng)扇形的面積最大時,扇形的的半徑和圓心角的大小.

1)設(shè)扇形的圓心角大小為,半徑為,

則由題意可得:

聯(lián)立解得:扇形的圓心角

2)設(shè)扇形的半徑和弧長分別為,

由題意可得

∴扇形的面積

當(dāng)S取最大值,此時,

此時圓心角為

∴當(dāng)半徑為10圓心角為2時,扇形的面積最大,最大值為100

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.我市環(huán)保局隨機抽取了一居民區(qū)2016年20天PM2.5的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如表:

組別

PM2.5濃度
(微克/立方米)

頻數(shù)(天)

頻率

第一組

(0,25]

3

0.15

第二組

(25,50]

12

0.6

第三組

(50,75]

3

0.15

第四組

(75,100]

2

0.1


(1)將這20天的測量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求圖4中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(2)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期末考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是.

(1)若成績在的學(xué)生中男生比女生多一人,從成績在的學(xué)生中任選2人,求此2人都是男生的概率;

(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線與圓相切,求的值;

(2)若函數(shù)上存在極值,求的取值范圍;

(3)若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對高二年段的男生進(jìn)行體檢,現(xiàn)將高二男生的體重(kg)數(shù)據(jù)進(jìn)行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組[60,65)的人數(shù)為200.根據(jù)一般標(biāo)準(zhǔn),高二男生體重超過65kg屬于偏胖,低于55kg屬于偏瘦.觀察圖形的信息,回答下列問題:

(1)求體重在[60,65)內(nèi)的頻率,并補全頻率分布直方圖;

(2)用分層抽樣的方法從偏胖的學(xué)生中抽取6人對日常生活習(xí)慣及體育鍛煉進(jìn)行調(diào)查,則各組應(yīng)分別抽取多少人?

(3)根據(jù)頻率分布直方圖,估計高二男生的體重的中位數(shù)與平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】蘭天購物廣場某營銷部門隨機抽查了100名市民在2018年國慶長假期間購物廣場的消費金額,所得數(shù)據(jù)如表,已知消費金額不超過3千元與超過3千元的人數(shù)比恰為.

消費金額(單位:千元)

人數(shù)

頻率

8

0.08

12

0.12

8

0.08

7

0.07

合計

100

1.00

(1)試確定,的值,并補全頻率分布直方圖(如圖);

(2)用分層抽樣的方法從消費金額在、的三個群體中抽取7人進(jìn)行問卷調(diào)查,則各小組應(yīng)抽取幾人?若從這7人中隨機選取2人,則此2人來自同一群體的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (x>0,e為自然對數(shù)的底數(shù)),f'(x)是f(x)的導(dǎo)函數(shù). (Ⅰ)當(dāng)a=2時,求證f(x)>1;
(Ⅱ)是否存在正整數(shù)a,使得f'(x)≥x2lnx對一切x>0恒成立?若存在,求出a的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

同步練習(xí)冊答案