如圖,正方形ABCD中,點(diǎn)P在邊CD上,現(xiàn)有質(zhì)地均勻的粒子散落在正方形ABCD內(nèi),則粒子落在△PBA內(nèi)的概率等于( 。
分析:我們分別求出三角形區(qū)域的面積,并求出正方形面積面積用來表示全部基本事件,再代入幾何概型公式,即可求解.
解答:解:因?yàn)榫鶆虻牧W勇湓谡叫蝺?nèi)任何一點(diǎn)是等可能的
所以符合幾何概型的條件.
設(shè)A=“粒子落在三角形區(qū)域”則依題意得
正方形面積為:a×a=a2
三角形的面積為:
1
2
×
a×a=
1
2
a2,
∴P(A)=
1
2
a2

則粒子落在三角形區(qū)域的概率是
1
2
a2
a2
 
=
1
2

故答案為:A
點(diǎn)評:本題考查的知識點(diǎn)是幾何概型的意義,簡單地說,如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、如圖把正方形ABCD沿對角線BD折成直二面角,對于下面結(jié)論:
①AC⊥BD;
②CD⊥平面ABC;
③AB與BC成60°角;
④AB與平面BCD成45°角.
則其中正確的結(jié)論的序號為
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD、ABEF的邊長都是1,而且平面ABCD、ABEF互相垂直,點(diǎn)M在AC上移動,點(diǎn)N在BF上移動,若CM=BN=a(0<a<
2
),則MN的長的最小值為 ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD所在平面與等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求證:AB⊥平面ADE;
(II)(理)在線段BE上存在點(diǎn)M,使得直線AM與平面EAD所成角的正弦值為
6
3
,試確定點(diǎn)M的位置.
(文)若AD=2,求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•溫州二模)如圖,正方形ABCD與正方形CDEF所成的二面角為60°,則直線EC與直線AD所成的角的余弦值為
2
4
2
4

查看答案和解析>>

同步練習(xí)冊答案