分析 令f(x)=$\frac{1}{2}{x}^{2}$-lnx-$\frac{1}{2}{e}^{2}$+1,判斷f(x)的單調性和零點,根據(jù)函數(shù)的單調性得出不等式的解集.
解答 解:令f(x)=$\frac{1}{2}{x}^{2}$-lnx-$\frac{1}{2}{e}^{2}$+1,則f′(x)=x-$\frac{1}{x}$,∵x>1,∴f′(x)>0,∴f(x)在(1,+∞)上是增函數(shù),
∵f(e)=$\frac{1}{2}$e2-1-$\frac{1}{2}$e2+1=0,∴當x>e時,f(x)>0.
∴不等式$\frac{1}{2}{x}^{2}$-lnx-$\frac{1}{2}{e}^{2}$+1>0的解集為(e,+∞).
點評 本題考查了函數(shù)單調性在不等式中的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.50 | B. | 0.40 | C. | 0.43 | D. | 0.48 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com