利用下列盈利表中的數(shù)據(jù)進(jìn)行決策,應(yīng)選擇的方案是______.
自然狀況
概率盈利方案
A1
A2
A3
A4
S1
0.25
50
70
-20
98
S2
0.30
65
26
52
82
S3
0.45
26
16
78
-10
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某單位員工按年齡分為A,B,C三組,其人數(shù)之比為5:4:1,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,已知C組中甲、乙二人均被抽到的概率是則該單位員工總數(shù)為     
A.110B.100C.90D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)已知構(gòu)成某系統(tǒng)的元件能正常工作的概率為p(0<p<1),且各個(gè)元件能否正常工作是相互獨(dú)立的.今有2n(n大于1)個(gè)元件可按如圖所示的兩種聯(lián)結(jié)方式分別構(gòu)成兩個(gè)系統(tǒng)甲、乙.
(1)試分別求出系統(tǒng)甲、乙能正常工作的概率p1,p2;
(2) 比較p1與p2的大小,并從概率意義上評(píng)價(jià)兩系統(tǒng)的優(yōu)劣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
汽車是碳排放量比較大的行業(yè)之一.歐盟規(guī)定,從2012年開始,將對(duì)排放量超過型新車進(jìn)行懲罰.某檢測(cè)單位對(duì)甲、乙兩類型品牌車各抽取輛進(jìn)行排放量檢測(cè),記錄如下(單位:).

80
110
120
140
150

100
120


160
經(jīng)測(cè)算發(fā)現(xiàn),乙品牌車排放量的平均值為
(Ⅰ)從被檢測(cè)的5輛甲類品牌車中任取2輛,則至少有一輛不符合排放量的概率是多少?
(Ⅱ)若,試比較甲、乙兩類品牌車排放量的穩(wěn)定性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個(gè)袋中裝有大小相同的黑球、白球和紅球.已知袋中共有10個(gè)球.從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是.求:
(1)從中任意摸出2個(gè)球,得到的都是黑球的概率;
(2)袋中白球的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分12分)
為了評(píng)估天氣對(duì)大運(yùn)會(huì)的影響,制定相應(yīng)預(yù)案,深圳市氣象局通過對(duì)最近50多年的氣象數(shù)據(jù)資料的統(tǒng)計(jì)分析,發(fā)現(xiàn)8月份是本市雷電天氣高峰期,在31天中平均發(fā)生雷電14.57天如圖.如果用頻率作為概率的估計(jì)值,并假定每一天發(fā)生雷電的概率均相等,且相互獨(dú)立.

(1)求在大運(yùn)會(huì)開幕(8月12日)后的前3天比賽中,恰好有2天發(fā)生雷電天氣的概率(精確到0.01);
(2)設(shè)大運(yùn)會(huì)期間(8月12日至23日,共12天),發(fā)生雷電天氣的天數(shù)為,求的數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知都是定義在R上的函數(shù), g(x)≠0,, ,,在有窮數(shù)列{}( n=1,2,…,10)中,任意取前k項(xiàng)相加,則前k項(xiàng)和大于的概率是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙兩人各進(jìn)行一次射擊,如果兩人擊中目標(biāo)的概率都是0.6,則其中恰有一人擊中目標(biāo)的概率是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某學(xué)校為提升數(shù)字化信息水平,在校園之間架設(shè)了7條網(wǎng)線,這7條網(wǎng)線其中有兩條能通過一個(gè)信息量,有三條能通過兩個(gè)信息量,有兩條能通過三個(gè)信息量.現(xiàn)從中任選三條網(wǎng)線,設(shè)可通過的信息量為X,當(dāng)可通過的信息量不小于6時(shí),則可保證校園內(nèi)的信息通暢.
(1)求線路信息通暢的概率;
(2)求線路可通過的信息量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案