在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,離心率為.
(1)求橢圓C的方程;
(2)A,B為橢圓C上滿足△AOB的面積為的任意兩點(diǎn),E為線段AB的中點(diǎn),射線OE交橢圓C于點(diǎn)P.設(shè)t,求實(shí)數(shù)t的值.

(1)y2=1(2)t=2或t

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓+=1(a>b>0),點(diǎn)P(a,a)在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn),若點(diǎn)Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)點(diǎn)P是圓x2y2=4上任意一點(diǎn),由點(diǎn)Px軸作垂線PP0,垂足為P0,且.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線lykxm(m≠0)與(1)中的軌跡C交于不同的兩點(diǎn)A,B.
若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,右焦點(diǎn)到直線的距離為
(1)求橢圓的方程;
(2)過橢圓右焦點(diǎn)F2斜率為)的直線與橢圓相交于兩點(diǎn),為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的三個(gè)頂點(diǎn)都在拋物線上,且拋物線的焦點(diǎn)滿足,若邊上的中線所在直線的方程為為常數(shù)且).
(1)求的值;
(2)為拋物線的頂點(diǎn),,的面積分別記為,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線,拋物線,已知點(diǎn)在拋物線上,且拋物線上的點(diǎn)到直線的距離的最小值為

(1)求直線及拋物線的方程;
(2)過點(diǎn)的任一直線(不經(jīng)過點(diǎn))與拋物線交于、兩點(diǎn),直線與直線相交于點(diǎn),記直線,,的斜率分別為,.問:是否存在實(shí)數(shù),使得?若存在,試求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,過點(diǎn)F1的直線l交橢圓CEG兩點(diǎn),且△EGF2的周長(zhǎng)為4.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足t (O為坐標(biāo)原點(diǎn)),當(dāng)||<時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且截拋物線的準(zhǔn)線所得弦長(zhǎng)為,傾斜角為的直線過點(diǎn).
(1)求該橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問拋物線上是否存在一點(diǎn),使得關(guān)于直線對(duì)稱,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一條曲線軸右側(cè),上每一點(diǎn)到點(diǎn)的距離減去它到軸距離的差都是1.
(1)求曲線的方程;
(2)設(shè)直線交曲線兩點(diǎn),線段的中點(diǎn)為,求直線的一般式方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案