在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,離心率為.
(1)求橢圓C的方程;
(2)A,B為橢圓C上滿足△AOB的面積為的任意兩點(diǎn),E為線段AB的中點(diǎn),射線OE交橢圓C于點(diǎn)P.設(shè)
=t
,求實(shí)數(shù)t的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓+
=1(a>b>0),點(diǎn)P(
a,
a)在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn),若點(diǎn)Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為P0,且=
.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線l:y=kx+m(m≠0)與(1)中的軌跡C交于不同的兩點(diǎn)A,B.
若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:
的離心率為
,右焦點(diǎn)
到直線
的距離為
.
(1)求橢圓的方程;
(2)過(guò)橢圓右焦點(diǎn)F2斜率為(
)的直線
與橢圓
相交于
兩點(diǎn),
為橢圓的右頂點(diǎn),直線
分別交直線
于點(diǎn)
,線段
的中點(diǎn)為
,記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知的三個(gè)頂點(diǎn)都在拋物線
上,且拋物線的焦點(diǎn)
滿足
,若
邊上的中線所在直線
的方程為
(
為常數(shù)且
).
(1)求的值;
(2)為拋物線的頂點(diǎn),
,
,
的面積分別記為
,
,
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線,拋物線
,已知點(diǎn)
在拋物線
上,且拋物線
上的點(diǎn)到直線
的距離的最小值為
.
(1)求直線及拋物線
的方程;
(2)過(guò)點(diǎn)的任一直線(不經(jīng)過(guò)點(diǎn)
)與拋物線
交于
、
兩點(diǎn),直線
與直線
相交于點(diǎn)
,記直線
,
,
的斜率分別為
,
,
.問(wèn):是否存在實(shí)數(shù)
,使得
?若存在,試求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為
,其左、右焦點(diǎn)分別是F1、F2,過(guò)點(diǎn)F1的直線l交橢圓C于E、G兩點(diǎn),且△EGF2的周長(zhǎng)為4
.
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足+
=t
(O為坐標(biāo)原點(diǎn)),當(dāng)|
-
|<
時(shí),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的一個(gè)焦點(diǎn)
與拋物線
的焦點(diǎn)重合,且截拋物線的準(zhǔn)線所得弦長(zhǎng)為
,傾斜角為
的直線
過(guò)點(diǎn)
.
(1)求該橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問(wèn)拋物線
上是否存在一點(diǎn)
,使得
與
關(guān)于直線
對(duì)稱,若存在,求出點(diǎn)
的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知一條曲線在
軸右側(cè),
上每一點(diǎn)到點(diǎn)
的距離減去它到
軸距離的差都是1.
(1)求曲線的方程;
(2)設(shè)直線交曲線
于
兩點(diǎn),線段
的中點(diǎn)為
,求直線
的一般式方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com