設(shè),恒有成立,且,則實數(shù)

的值為                                 

 A.          B.            C.-3或1          D.-1或3

 

【答案】

D

【解析】因為,所以f(x)的對稱軸為,因為.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R且a≠0)同時滿足下列條件:①f(1)=1;②當x∈R時,恒有f(x)≥x成立;③當x∈R時,恒有f(x-4)=f(2-x)成立.
(1)求f(x)的表達式;
(2)設(shè)g(x)=4f(x)-4x+2,試問g(x)是否存在這樣的區(qū)間[a,b](a<b)同時滿足下列條件:①g(x)在[a,b]上單調(diào);②若g(x)的定義域是[a,b],則其值域也是[a,b].若存在,求出這樣的區(qū)間[a,b],若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在集合D上的函數(shù),若對集合D中的任意兩數(shù)x1,x2恒有f(
1
4
x1+
3
4
x2)<
1
4
f(x1)+
3
4
f(x2)
成立,則f(x)是定義在D上的β函數(shù).
(1)試判斷f(x)=x2是否是其定義域上的β函數(shù)?
(2)設(shè)f(x)是定義在R上的奇函數(shù),求證:f(x)不是定義在R上的β函數(shù).
(3)設(shè)f(x)是定義在集合D上的函數(shù),若對任意實數(shù)α∈[0,1]以及集合D中的任意兩數(shù)x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)是定義在D上的α-β函數(shù).已知f(x)是定義在R上的α-β函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對任意滿足條件的函數(shù)f(x),求∫的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•南通三模)設(shè)f(x)是定義在(0,+∞)的可導函數(shù),且不恒為0,記gn(x)=
f(x)
xn
(n∈N*)
.若對定義域內(nèi)的每一個x,總有g(shù)n(x)<0,則稱f(x)為“n階負函數(shù)”;若對定義域內(nèi)的每一個x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)a的取值范圍;
(2)對任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)f(x)是定義在集合D上的函數(shù),若對集合D中的任意兩數(shù)x1,x2恒有數(shù)學公式成立,則f(x)是定義在D上的β函數(shù).
(1)試判斷f(x)=x2是否是其定義域上的β函數(shù)?
(2)設(shè)f(x)是定義在R上的奇函數(shù),求證:f(x)不是定義在R上的β函數(shù).
(3)設(shè)f(x)是定義在集合D上的函數(shù),若對任意實數(shù)α∈[0,1]以及集合D中的任意兩數(shù)x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)是定義在D上的α-β函數(shù).已知f(x)是定義在R上的α-β函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對任意滿足條件的函數(shù)f(x),求∫的最大值.

查看答案和解析>>

同步練習冊答案