【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性.
【答案】(1) ;(2) 當(dāng)時(shí), 在上單調(diào)遞減;
當(dāng)時(shí),在單調(diào)遞減,在上單調(diào)遞增.
【解析】試題分析:(1)利用導(dǎo)數(shù)的幾何意義求點(diǎn)處的切線方程;(2),
即分析的符號(hào)情況,先抓二次項(xiàng)系數(shù),進(jìn)而分析拋物線與x軸的交點(diǎn)情況,即可得到函數(shù)的單調(diào)性.
試題解析:
(1)當(dāng)時(shí),,則,
又,
所以曲線在處的切線方程為:,即;
(2),
令,
①當(dāng)時(shí),,,所以在單調(diào)遞減;
②當(dāng)時(shí),二次函數(shù)的圖象開(kāi)口方向向下,
其圖象對(duì)稱(chēng)軸,且,
所以當(dāng)時(shí),,
所以在單調(diào)遞減;
③當(dāng)時(shí),二次函數(shù)開(kāi)口向上,其圖象對(duì)稱(chēng)軸.
,其圖象與軸正半軸交點(diǎn)為,
所以當(dāng)時(shí),,
所以在上單調(diào)遞減.
當(dāng)時(shí),,
所以在上單調(diào)遞增,
綜上所述:當(dāng)時(shí), 在上單調(diào)遞減;
當(dāng)時(shí),在單調(diào)遞減,在上單調(diào)遞增.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四棱錐S﹣ABCD中,底面ABCD是菱形,且∠BCD=60°,側(cè)面SAB是正三角形,且面SAB⊥面ABCD,F(xiàn)為SD的中點(diǎn).
(1)證明:SB∥面ACF;
(2)求面SBC與面SAD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f (x)= .
(1)求函數(shù)f (x)的圖象在x= 處的切線方程;
(2)求y=f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足al=﹣2,an+1=2an+4.
(I)證明數(shù)列{an+4}是等比數(shù)列;
(Ⅱ)求數(shù)列{|an|}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(2x+ )100=a0+a1x+a2x2+…+a100x100 , 則(a0+a2+a4+…+a100)2﹣(a1+a3+a5+…+a99)2的值為( )
A.1
B.﹣1
C.0
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個(gè)參賽隊(duì)伍只比賽一場(chǎng)),有高一、高二、高三共三個(gè)隊(duì)參賽,高一勝高二的概率為,高一勝高三的概率為,高二勝高三的概率為,每場(chǎng)勝負(fù)相互獨(dú)立,勝者記1分,負(fù)者記0分,規(guī)定:積分相同時(shí),高年級(jí)獲勝.
(1)若高三獲得冠軍的概率為,求;
(2)記高三的得分為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,2),函數(shù)g(x)=f(x﹣1)+f(3﹣2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù)且在定義域內(nèi)單調(diào)遞減,求不等式g(x)≤0的解集
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】傳說(shuō)古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫(huà)點(diǎn)或用小石子表示數(shù).他們研究過(guò)如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列{bn},可以推測(cè):
(1)b5=;
(2)b2n﹣1= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com