2.已知函數(shù)f(x)=x3+ax2+bx+c在x=1處取得極值,且在x=-1處的切線斜率為2.
(1)求a,b的值;
(2)若x∈[-1,2]時,f(x)<c2恒成立,求c的取值范圍.

分析 (1)求出f′(x),因為函數(shù)在x=1處取得極值,在x=-1處的切線斜率為2,聯(lián)立方程組解得a與b的值,然后把a、b的值.
(2)判斷函數(shù)的單調(diào)性,由于x∈[-1,2]恒成立求出函數(shù)的最大值值為f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范圍即可.

解答 解:(1)f(x)=x3+ax2+bx+c,f'(x)=3x2+2ax+b,
由$\left\{\begin{array}{l}{f′(1)=3+2a+b=0}\\{f′(-1)=3-2a+b=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=-2}\end{array}\right.$,
(2)由(1)可得:f'(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

x(-∞,-$\frac{2}{3}$)-$\frac{2}{3}$(-$\frac{2}{3}$,1)1(1,+∞)
f′(x)+0-0+
f(x)極大值極小值
所以函數(shù)f(x)的遞增區(qū)間是(-∞,-$\frac{2}{3}$)和(1,+∞),遞減區(qū)間是(-$\frac{2}{3}$,1).
函數(shù)f(x)=x3-$\frac{1}{2}$x2-2x+c,x∈[-1,2],
當x=-$\frac{2}{3}$時,f(x)=$\frac{22}{27}$+c為極大值,而f(2)=2+c,所以f(2)=2+c為最大值.
要使f(x)<c2對x∈[-1,2]恒成立,須且只需c2>f(2)=2+c.
解得c<-1或c>2.

點評 考查學生利用導(dǎo)數(shù)研究函數(shù)極值的能力,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,以及理解函數(shù)恒成立時所取到的條件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2017屆甘肅會寧縣一中高三上學期9月月考數(shù)學(文)試卷(解析版) 題型:解答題

選修4—4:坐標系與參數(shù)方程

已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為.

(1)把C1的參數(shù)方程化為極坐標方程;

(2)求C1與C2交點的極坐標().

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆甘肅會寧縣一中高三上學期9月月考數(shù)學(理)試卷(解析版) 題型:選擇題

函數(shù)的圖象關(guān)于原點對稱,是偶函數(shù),則( )

A.1 B.-1 C.- D.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽六安一中高三上學期月考二數(shù)學(文)試卷(解析版) 題型:選擇題

已知函數(shù)至少有5個零點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽六安一中高三上學期月考二數(shù)學(文)試卷(解析版) 題型:選擇題

若滿足有兩個,則邊長的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在四棱錐A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,$AC=\sqrt{2}$.
(1)證明:DE⊥平面ACD;
(2)求二面角B-AD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2-x+3lnx,x=1是函數(shù)f(x)的一個極值點.
(1)求a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若僅存在一個整數(shù)x0,使得f(x0)-kx0-k>0成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.?x∈R,使不等式|x-2|+|x-4|≤2$\sqrt{2}$sinα成立,則α的取值范圍為2kπ+$\frac{π}{4}$≤α≤2kπ+$\frac{3π}{4}$(k∈Z).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若函數(shù)f(x)=a2(2-a)x是指數(shù)函數(shù),則a等于-1.

查看答案和解析>>

同步練習冊答案