【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),解方程;
(2)當(dāng)時(shí),若不等式在上恒成立,求實(shí)數(shù)a的取值范圍;
(3)若a為常數(shù),且函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)b的取值范圍.
【答案】(1);(2);(3)見(jiàn)解析.
【解析】試題分析:(1)當(dāng)時(shí),原方程化為,先解得即可得結(jié)果;(2)不等式在上恒成立,等價(jià)于在上恒成立,求出函數(shù)的最大值即可得結(jié)果;(3)函數(shù)在上存在零點(diǎn),即方程在上有解,分類求出的值域即可得結(jié)果.
試題解析:(1)當(dāng)時(shí), ,所以方程即為:
解得: 或(舍),所以;
(2)當(dāng)時(shí),若不等式在上恒成立;
當(dāng)時(shí),不等式恒成立,則;
當(dāng)時(shí), 在上恒成立,即在上恒成立,
因?yàn)?/span>在上單調(diào)增, , ,則,
得;則實(shí)數(shù)的取值范圍為;
(3)函數(shù)在上存在零點(diǎn),即方程在上有解;
設(shè)
當(dāng)時(shí),則,且在上單調(diào)增,
所以, ,
則當(dāng)時(shí),原方程有解,
則;
當(dāng)時(shí), ,
在上單調(diào)增,在上單調(diào)減,在上單調(diào)增;
當(dāng),即時(shí), ,
則當(dāng)時(shí),原方程有解,則;
當(dāng),即時(shí), ,
則當(dāng)時(shí),原方程有解,則;
當(dāng)時(shí), ,
當(dāng),即則時(shí), ,
則當(dāng)時(shí),原方程有解,則;
當(dāng),即則時(shí), ,
則當(dāng)時(shí),原方程有解,則;
綜上,當(dāng)時(shí),實(shí)數(shù)的取值范圍為;
當(dāng)時(shí),實(shí)數(shù)的取值范圍為;
當(dāng)時(shí),實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市一家庭今年一月份、二月份和三月份煤氣用量和支付費(fèi)用如下表所示:
月份 | 用氣量(立方米) | 煤氣費(fèi)(元) |
1 | 4 | 4.00 |
2 | 25 | 14.00 |
3 | 35 | 19.00 |
該市煤氣收費(fèi)的方法是:煤氣費(fèi)=基本費(fèi)+超額費(fèi)+保險(xiǎn)費(fèi).
若每月用氣量不超過(guò)最低額度A(A>4)立方米時(shí),只付基本費(fèi)3元和每戶每月定額保險(xiǎn)費(fèi)C(0<C≤5)元;若用氣量超過(guò)A立方米時(shí),超過(guò)部分每立方米付B元.
(1)根據(jù)上面的表格求A,B,C的值;
(2)記該家庭第四月份用氣為x立方米,求應(yīng)交的煤氣費(fèi)y元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出30個(gè)數(shù):1,2,4,7,…,其規(guī)律是:第1個(gè)數(shù)是1,第2個(gè)數(shù)比第1個(gè)數(shù)大1,第3個(gè)數(shù)比第2個(gè)數(shù)大2,第4個(gè)數(shù)比第3個(gè)數(shù)大3,依此類推.要計(jì)算這30個(gè)數(shù)的和,現(xiàn)已給出了該問(wèn)題算法的程序框圖(如圖所示),請(qǐng)?jiān)趫D中判斷框內(nèi)①處和執(zhí)行框中的②處填上合適的語(yǔ)句,使之能完成該題算法功能.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 下列四個(gè)命題: ①f(f(1))>f(3);
②x0∈(1,+∞), ;
③f(x)的極大值點(diǎn)為x=1;
④x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正確的有 . (寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)從某次考試成績(jī)中抽取若干名學(xué)生的分?jǐn)?shù),并繪制成如圖所示的頻率分布直方圖,樣本數(shù)據(jù)分組為[50,60),[60,70),[70,80),[80,90),[90,100].若用分層抽樣的方法從樣本中抽取分?jǐn)?shù)在[80,100]范圍內(nèi)的數(shù)據(jù)16個(gè),則其中分?jǐn)?shù)在[90,100]范圍內(nèi)的樣本數(shù)據(jù)有 ( )
A. 5個(gè) B. 6個(gè)
C. 8個(gè) D. 10個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓 的右頂點(diǎn)為A,上頂點(diǎn)為B,過(guò)點(diǎn)O且斜率為 的直線與直線AB相交M,且 .
(Ⅰ)求證:a=2b;
(Ⅱ)PQ是圓C:(x﹣2)2+(y﹣1)2=5的一條直徑,若橢圓E經(jīng)過(guò)P,Q兩點(diǎn),求橢圓E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且a>c,已知=2,cosB=,b=3,求:
(1)a和c的值;
(2)cos(B-C)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),若對(duì)于任意x∈[2,4],不等式f(x)+t≤2恒成立,則t的取值范圍為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com