【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點(diǎn)P為曲線C上的動點(diǎn),求P到直線l的距離的最小值.
【答案】解:(Ⅰ)直線l: (其中t為參數(shù)),消去參數(shù)t得普通方程y=x﹣4.由ρ=4cosθ得ρ2=4ρcosθ.
由x=ρcosθ,y=ρsinθ以及x2+y2=ρ2 , 得
x2+(y﹣2)2=4;
(Ⅱ)由x2+(y﹣2)2=4得圓心坐標(biāo)為(0,2),半徑R=2,
則圓心到直線的距離為:d= =3 ,
而點(diǎn)P在圓上,即O′P+PQ=d(Q為圓心到直線l的垂足),
所以點(diǎn)P到直線l的距離最小值為3 ﹣2.
【解析】(Ⅰ)消去參數(shù)t即可得到直線l的普通方程;利用x=ρcosθ,y=ρsinθ將曲線C轉(zhuǎn)化為普通方程;(Ⅱ)利用點(diǎn)到直線的距離公式,求出P到直線l的距離的最小值,再根據(jù)函數(shù)取最值的情況求出P點(diǎn)的坐標(biāo),得到本題結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義域的R,當(dāng)x<0時,f(x)>1,且對任意的實(shí)數(shù)x,y∈R,等式f(x)f(y)=f(x+y)成立,若數(shù)列{an}滿足f(an+1)f( )=1(n∈N*),且a1=f(0),則下列結(jié)論成立的是( )
A.f(a2013)>f(a2016)
B.f(a2014)>f(a2017)
C.f(a2016)<f(a2015)
D.f(a2013)>f(a2015)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 = ( ).
(Ⅰ)當(dāng) =2時,求函數(shù) 在(1, )處的切線方程;
(Ⅱ)若 ≥1時, ≥0,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:x+ y﹣c=0(c>0)為公海與領(lǐng)海的分界線,一艘巡邏艇在O處發(fā)現(xiàn)了北偏東60°海面上A處有一艘走私船,走私船正向停泊在公海上接應(yīng)的走私海輪B航行,以使上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.
(1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點(diǎn)的軌跡;
(2)若O與公海的最近距離20海里,要保證在領(lǐng)海內(nèi)捕獲走私船(即不能截獲走私船的區(qū)域與公海不想交).則O,A之間的最遠(yuǎn)距離是多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A,B,C的對邊分別為a、b、c, ,△ABC的面積為 .
(Ⅰ)求c的值;
(Ⅱ)求cos(B﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為x2+y2﹣6x=0,過點(diǎn)(1,2)的該圓的三條弦的長a1 , a2 , a3構(gòu)成等差數(shù)列,則數(shù)列a1 , a2 , a3的公差的最大值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: =1經(jīng)過點(diǎn)(2,3),兩條漸近線的夾角為60°,直線l交雙曲線于A,B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若l過原點(diǎn),P為雙曲線上異于A,B的一點(diǎn),且直線PA,PB的斜率kPA , kPB均存在,求證:kPAkPB為定值;
(3)若l過雙曲線的右焦點(diǎn)F1 , 是否存在x軸上的點(diǎn)M(m,0),使得直線l繞點(diǎn)F1無論怎樣轉(zhuǎn)動,都有 =0成立?若存在,求出M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=lg(m2﹣2m﹣2)+(m2+3m+2)i,根據(jù)以下條件分別求實(shí)數(shù)m的值或范圍.
(1)z是純虛數(shù);
(2)z對應(yīng)的點(diǎn)在復(fù)平面的第二象限.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com