分析 (Ⅰ)根據(jù)條件建立方程組關(guān)系,求出首項,利用數(shù)列的遞推關(guān)系證明數(shù)列{an}是公比q=3的等比數(shù)列,即可求通項公式an;
(Ⅱ)討論n的取值,利用分組法將數(shù)列轉(zhuǎn)化為等比數(shù)列和等差數(shù)列即可求數(shù)列{|an-n-2|}的前n項和.
解答 解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.
∴a1+a2=4,a2=2S1+1=2a1+1,
解得a1=1,a2=3,
當n≥2時,an+1=2Sn+1,an=2Sn-1+1,
兩式相減得an+1-an=2(Sn-Sn-1)=2an,
即an+1=3an,當n=1時,a1=1,a2=3,
滿足an+1=3an,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=3,則數(shù)列{an}是公比q=3的等比數(shù)列,
則通項公式an=3n-1.
(Ⅱ)an-n-2=3n-1-n-2,
設(shè)bn=|an-n-2|=|3n-1-n-2|,
則b1=|30-1-2|=2,b2=|3-2-2|=1,
當n≥3時,3n-1-n-2>0,
則bn=|an-n-2|=3n-1-n-2,
此時數(shù)列{|an-n-2|}的前n項和Tn=3+$\frac{9(1-{3}^{n-2})}{1-3}$-$\frac{(5+n+2)(n-2)}{2}$=$\frac{{3}^{n}-{n}^{2}-5n+11}{2}$,
則Tn=$\left\{\begin{array}{l}{2,}&{n=1}\\{3,}&{n=2}\\{\frac{{3}^{n}-{n}^{2}-5n+11}{2},}&{n≥3}\end{array}\right.$=$\left\{\begin{array}{l}{2,}&{n=1}\\{\frac{{3}^{n}-{n}^{2}-5n+11}{2},}&{n≥2}\end{array}\right.$.
點評 本題主要考查遞推數(shù)列的應(yīng)用以及數(shù)列求和的計算,根據(jù)條件建立方程組以及利用方程組法證明列{an}是等比數(shù)列是解決本題的關(guān)鍵.求出過程中使用了轉(zhuǎn)化法和分組法進行數(shù)列求和.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com