(本小題12分)已知F1,F2是橢圓的左、右焦點,點P(-1,)在橢圓上,線段PF2軸的交點滿足.(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過F1作不與軸重合的直線,與圓相交于A、B.并與橢圓相交于C、D.當(dāng),且時,求△F2CD的面積S的取值范圍.
(1):∵   ∴M是線段PF2的中點.
∴OM是△PF1F2的中位線.又OM⊥F1F2.∴PF1⊥F1F2
 解得.∴橢圓方程為
(2)設(shè)方程為,
 得



 得  設(shè)
  
設(shè), 則
關(guān)于上是減函數(shù).所以
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線
(I)證明相交;
(II)證明的交點在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分12分)
已知O為坐標(biāo)原點,F(xiàn)為橢圓在y軸正半軸上的焦點,過F且斜率為的直線與C交于A、B兩點,點P滿足   
(Ⅰ)證明:點P在C上;
(Ⅱ)設(shè)點P關(guān)于點O的對稱點為Q,證明:A、P、B、Q四點在同一個圓上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)(注意:在試題卷上作答無效)
已知的頂點A在射線上,、兩點關(guān)于x軸對稱,0為坐標(biāo)原點,
且線段AB上有一點M滿足當(dāng)點A在上移動時,記點M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)是否存在過的直線與W相交于P,Q兩點,使得若存在,
求出直線;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在中,,,                A
,則的值為(     )                   B             D      C
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是三角形的一個內(nèi)角,且,則方程所表示的曲線為(    ).
A.焦點在軸上的橢圓B.焦點在軸上的橢圓
C.焦點在軸上的雙曲線D.焦點在軸上的的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一條線段AB的長為2,兩個端點A和B分別在x軸和y軸上滑動,則線段AB的中點的軌跡是(  )
A.雙曲線B.雙曲線的一分支
C.圓D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別是橢圓C:的左焦點和右焦點,O是坐標(biāo)系原點, 且橢圓C的焦距為6, 過的弦AB兩端點A、B與所成的周長是.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點是橢圓C上不同的兩點,線段的中點為,
求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)閱讀下列材料,解決數(shù)學(xué)問題.圓錐曲線具有非常漂亮的光學(xué)性質(zhì),被人們廣泛地應(yīng)用于各種設(shè)計之中,比如橢圓鏡面用來制作電影放映機(jī)的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學(xué)性質(zhì),從雙曲線的一個焦點發(fā)出的光線,經(jīng)過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如圖(1)所示.反比例函數(shù)的圖像是以直線為軸,以坐標(biāo)軸為漸近線的等軸雙曲線,記作C.
(Ⅰ)求曲線C的離心率及焦點坐標(biāo);
(Ⅱ)如圖(2),從曲線C的焦點F處發(fā)出的光線經(jīng)雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
(1)          (2) 

查看答案和解析>>

同步練習(xí)冊答案