【題目】甲、乙兩艘輪船駛向一個不能同時停泊兩艘輪船的碼頭,它們在一晝夜內(nèi)任何時刻到達(dá)是等可能的.
(1)已知甲船上有男女乘客各3名,現(xiàn)從中任選3人出來做某件事情,求所選出的人中恰有一位女乘客的概率;
(2)如果甲船的停泊時間為4小時,乙船的停泊時間為2小時,求它們中的任何一條船不需要等待碼頭空出的概率.

【答案】
(1)解:記男乘客分別為1,2,3,記女乘客分別為4,5,6,從中任取3人有123,124,125,126,134,135,136,145,146,156,234,235,236,245,246,256,345,346,356,456,共20種取法,其中恰含一女乘客的有124,125,126,134,135,136,234,235,236共9種,

∴所求概率P=


(2)解:當(dāng)甲船的停泊時間為4小時,乙船的停泊時間為2小時,兩船不需等待碼頭空出,則滿足x﹣y≥2或y﹣x≥4.

設(shè)在上述條件時“兩船不需等待碼頭空出”為事件B,畫出區(qū)域如圖: ,

P(B)= = =


【解析】(1)利用列舉法進(jìn)行求解即可.(2)利用幾何概型求出對應(yīng)的面積進(jìn)行求解即可.
【考點精析】解答此題的關(guān)鍵在于理解幾何概型的相關(guān)知識,掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形DCFE為正方形,四邊形ABCD為等腰梯形,AB∥CD,AC= ,AB=2BC=2,且AC⊥FB.
(1)求證:平面EAC⊥平面FCB;
(2)若線段AC上存在點M,使AE∥平面FDM,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:

ωx+φ

0

π

x

f(x)

0

3

0

﹣3

0


(1)請將表中數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,求當(dāng)x∈[﹣ , ]時,函數(shù)g(x)的值域;
(3)若將y=f(x)圖象上所有點向左平移θ(θ>0)個單位長度,得到y(tǒng)=h(x)的圖象,若=h(x)圖象的一個對稱中心為( ),求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ 為定義在R上的奇函數(shù).
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)若f(lnm)+f(2lnn)≤1﹣3lnm,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調(diào),則ω的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象向左平移 個單位后得到函數(shù)y=g(x)的圖象,若y=g(x)是偶函數(shù),則φ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線實軸長為6,一條漸近線方程為4x﹣3y=0.過雙曲線的右焦點F作傾斜角為 的直線交雙曲線于A、B兩點
(1)求雙曲線的方程;
(2)求線段AB的中點C到焦點F的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點.

(1)求證:直線AE⊥平面A1D1E;
(2)求二面角E﹣AD1﹣A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin(x﹣ )的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得圖象向左平移 個單位,則所得函數(shù)圖象對應(yīng)的解析式為(
A.y=sin( x﹣
B.y=sin(2x﹣
C.y=sin x
D.y=sin( x﹣

查看答案和解析>>

同步練習(xí)冊答案