15.i是虛數(shù)單位,(1-i)Z=2i,則復(fù)數(shù)Z的模|Z|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.

解答 解:∵(1-i)Z=2i,
∴$Z=\frac{2i}{1-i}=\frac{2i(1+i)}{(1-i)(1+i)}=-1+i$,
則|Z|=$\sqrt{2}$.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.($\sqrt{x}$-$\frac{1}{x}$)5的二項(xiàng)展開(kāi)式中,含x的一次項(xiàng)的系數(shù)為-5(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在四菱錐P-ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(I)求證:PA⊥AB;
(II)求直線AD與平面PCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,∠A的角平分線交BC于點(diǎn)D,且AD=1,邊BC上的高AH=$\frac{1}{2}$,△ABD的面積是△ACD的面積的2倍,則BC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,又點(diǎn)$A({1,\sqrt{2}})$在該橢圓上.
(1)求橢圓E的方程;
(2)若斜率為$\sqrt{2}$的直線l與橢圓E交于不同的兩點(diǎn)B,C,求△ABC的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,輸出的S=(  )
A.4B.$-\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若x、y滿足$\left\{\begin{array}{l}y≥\frac{1}{2}x\\ y≤2x\\ x+4y≤9\end{array}\right.$,且z=x-ay的最大值為4,則實(shí)數(shù)a的值為$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知a>b>0,c<0,下列不等關(guān)系中正確的是( 。
A.ac>bcB.ac>bcC.loga(a-c)>logb(b-c)D.$\frac{a}{a-c}$>$\frac{b-c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)x∈R,向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(4,-2),且$\overrightarrow{a}$$∥\overrightarrow$,則|$\overrightarrow{a}+\overrightarrow$|=( 。
A.$\sqrt{5}$B.5C.$\frac{\sqrt{85}}{2}$D.$\frac{85}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案