1.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域的面積是( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2D.2$\sqrt{3}$

分析 由約束條件作出可行域,聯(lián)立方程組求得三角形三個(gè)頂點(diǎn)的坐標(biāo),代入三角形面積公式得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}\right.$作出可行域如圖,

不等式組表示的平面區(qū)域是一個(gè)三角形內(nèi)部(包括邊界).
其中三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,0),B(1,$\sqrt{3}$),O(0,0),
∴${S}_{△AOB}=\frac{1}{2}×2×\sqrt{3}=\sqrt{3}$.
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實(shí)數(shù)a,b滿足(a+2i)•bi=3i+6(i為虛數(shù)單位)則在復(fù)平面內(nèi),復(fù)數(shù)z=a+bi所對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖莖葉圖記錄了甲,乙兩班各六名同學(xué)一周的課外閱讀時(shí)間(單位:小時(shí)),已知甲班數(shù)據(jù)的平均數(shù)為13,乙班數(shù)據(jù)的中位數(shù)為17,那么x的位置應(yīng)填3;y的位置應(yīng)填8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=xsinx+cosx.
(1)當(dāng)$x∈(\frac{π}{4},π)$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在$x∈(\frac{π}{4},\frac{π}{2})$,使得f(x)>kx2+cosx成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在凸四邊形ABCD中,BD=2,且$\overrightarrow{AC}•\overrightarrow{BD}=0$,$(\overrightarrow{AB}+\overrightarrow{DC})•(\overrightarrow{BC}+\overrightarrow{AD})=5$,則四邊形ABCD的面積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(ax+$\sqrt{x}$)5的展開式中x3項(xiàng)的系數(shù)為20,則實(shí)數(shù)a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若數(shù)列{an}為等差數(shù)列,S99=198,則a48+a49+a50+a51+a52=(  )
A.7B.8C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)已知拋物線C:y2=2px的焦點(diǎn)為F1,過F1的直線l與曲線C相交于M,N兩點(diǎn).
(1)若直線l的傾斜角為60°,且|MN|=$\frac{16}{3}$,求p;
(2)若p=2,橢圓$\frac{{x}^{2}}{2}$+y2=1上兩個(gè)點(diǎn)P,Q,滿足:P,Q,F(xiàn)1三點(diǎn)共線且PQ⊥MN,求四邊形PMQN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.平行四邊形ABCD中,AB=2,AD=1,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-1,點(diǎn)M在邊CD上,則$\overrightarrow{MA}$•$\overrightarrow{MB}$的最大值為( 。
A.2B.2$\sqrt{2}$-1C.5D.$\sqrt{3}$-1

查看答案和解析>>

同步練習(xí)冊(cè)答案