【題目】已知a是實(shí)數(shù),函數(shù).
(1)若,求a的值及曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)在區(qū)間上的單調(diào)性.
【答案】(1),;(2)見(jiàn)解析.
【解析】
(1)化簡(jiǎn)并對(duì)其求導(dǎo),由的值構(gòu)建方程,求得a,進(jìn)而由點(diǎn)斜式表示切線方程;
(2)對(duì)求導(dǎo),令,表示兩根,利用分類討論含參數(shù)的根所在區(qū)間,從而得其導(dǎo)函數(shù)的正負(fù)關(guān)系,即原函數(shù)的單調(diào)性對(duì)應(yīng)增減.
(1),,
則,,,,
因此,曲線在點(diǎn)處的切線方程為,即;
(2),,
令,得,.
①當(dāng)時(shí),即當(dāng)時(shí),對(duì)任意的,,
此時(shí),函數(shù)在區(qū)間上單調(diào)遞增.
②當(dāng)時(shí),即當(dāng)時(shí),
此時(shí),當(dāng),則;
當(dāng)時(shí),.
此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;
③當(dāng)時(shí),即當(dāng)時(shí),對(duì)任意的,.
此時(shí),函數(shù)在區(qū)間上單調(diào)遞減.
綜上所述,當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),函數(shù)在區(qū)間單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】撫州市某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登軍峰山健身的活動(dòng),有人參加,現(xiàn)將所有參加人員按年齡情況分為,,,,,,等七組,其頻率分布直方圖如下圖所示.已知之間的參加者有4人.
(1)求和之間的參加者人數(shù);
(2)組織者從之間的參加者(其中共有名女教師包括甲女,其余全為男教師)中隨機(jī)選取名擔(dān)任后勤保障工作,求在甲女必須入選的條件下,選出的女教師的人數(shù)為2人的概率.
(3)已知和之間各有名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有名數(shù)學(xué)教師的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是函數(shù)的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求證:函數(shù)存在唯一的極小值點(diǎn),且.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形為正方形,, 是的中點(diǎn),是的中點(diǎn).
(1)求此四棱錐的體積;
(2)求證:平面;
(3)求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左、右焦點(diǎn)分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓,為橢圓上任意一點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),射線交橢圓于點(diǎn).
(i)求的值;
(ⅱ)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(1)若,命題“p∨q”為真,求實(shí)數(shù)的取值范圍;
(2)若是 的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)設(shè),曲線在點(diǎn)處的切線在軸上的截距為,求的最小值;
(Ⅱ)若只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com