11.已知實(shí)數(shù)m>0,p:x2-4x-12≤0,q:2-m≤x≤2+m.
(Ⅰ)若m=3,判斷p是q的什么條件(請(qǐng)用簡(jiǎn)要過(guò)程說(shuō)明“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個(gè));
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)m的取值范圍.

分析 (Ⅰ)分別求出p,q為真時(shí)的x的范圍,結(jié)合集合的包含關(guān)系判斷即可;(Ⅱ)根據(jù)p是q的充分條件,得到關(guān)于m的不等式組,解出即可.

解答 解:(Ⅰ)p:x2-4x-12≤0,解得:-2≤x≤6,
m=3時(shí),q:-1≤x≤5,
設(shè)集合A={x|-2≤x≤6},集合B={x|-1≤x≤5},
則B是A的真子集,
∴p是q的必要不充分條件;
(Ⅱ)由(Ⅰ)得:p:-2≤x≤6,q:2-m≤x≤2+m,
∵p是q的充分條件,∴$\left\{\begin{array}{l}{m>0}\\{2-m≤-2}\\{2+m≥6}\end{array}\right.$,解得:m≥4,
故m的范圍是[4,+∞).

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).已知(1,e)和(e,$\frac{\sqrt{3}}{2}$)都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓C的方程;
(2)拋物線y2=2px(p>0)的焦點(diǎn)和橢圓的右焦點(diǎn)重合,過(guò)右焦點(diǎn)作斜率為1的直線交橢圓于A,B,交拋物線于C,D,求△OAB和△OCD面積之比(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)y=tanωx(ω>0)與直線y=a相交于A、B兩點(diǎn),且|AB|最小值為π,則函數(shù)f(x)=3sin(ωx-$\frac{π}{6}$)的單調(diào)增區(qū)間是( 。
A.[k$π-\frac{π}{6}$,k$π+\frac{π}{3}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2k$π+\frac{2π}{3}$](k∈Z)
C.[kπ+$\frac{π}{3}$,k$π+\frac{5π}{6}$](k∈Z)D.[2k$π+\frac{2π}{3}$,2k$π+\frac{5π}{3}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.命題p:?x0>1,lgx0>1,則¬p為( 。
A.?x0>1,lgx0≤1B.?x0>1,lgx0<1C.?x>1,lgx≤1D.?x>1,lgx<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知直線l1:2x-my=1,l2:(m-1)x-y=1,若l1∥l2,則實(shí)數(shù)m的值為2或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知平面α與平面β相交于直線l,l1在平面α內(nèi),l2在平面β內(nèi),若直線l1和l2是異面直線,則下列說(shuō)法正確的是( 。
A.l與都相交l1,l2B.l至少與l1,l2中的一條相交
C.l至多與l1,l2中的一條相交D.l與l1,l2都不相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合A是實(shí)數(shù)集R的子集,如果x0∈R滿足:對(duì)任意a>0,都存在x∈A,使得0<|x-x0|<a,則稱x0為集合A的聚點(diǎn),給出下列集合(其中e為自然對(duì)數(shù)的底):①{1+$\frac{1}{x}$|x>0};②{2x|x∈N};③{x2+x+2|x∈R};④{lnx|x>0且x≠e},其中,以1為聚點(diǎn)的集合有( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{6}}}{3}$,直線l:x+y-1=0與C相交于A,B兩點(diǎn).
(Ⅰ)證明:線段AB的中點(diǎn)為定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(Ⅱ)設(shè)M(1,0),$\overrightarrow{MA}=λ\overrightarrow{BM}$,當(dāng)$a∈({\frac{{\sqrt{7}}}{2},\sqrt{3}})$時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若$0<α<\frac{π}{2}<β<π$,$f(\frac{π}{4}-\frac{β}{2})=\frac{1}{2}+\frac{{\sqrt{3}}}{6}$,$f(\frac{α+β}{2})=\frac{1}{2}-\frac{{7\sqrt{3}}}{18}$,求sinα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案