(2009•日照一模)在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大。
(Ⅱ)設
m
=(sinA,1),
n
=(-1,1)
,求
m
n
的最小值.
分析:(Ⅰ)利用正弦定理化簡已知的等式,整理后利用兩角和與差的正弦函數(shù)公式化簡,再利用誘導公式變形,根據(jù)sinA不為0,求出cosB的值,由B為三角形的內角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
(Ⅱ)由兩向量的坐標,利用平面向量的數(shù)量積運算法則計算所求的式子,根據(jù)B的度數(shù),得出A的范圍,利用正弦函數(shù)的單調性即可求出所求式子的最小值.
解答:解:(I)由正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R,有a=2RsinA,b=2RsinB,c=2RsinC,
代入(2a-c)cosB=bcosC,得(2sinA-sinC)cosB=sinBcosC,
即2sinAcosB=sinBcosC+sinCcosB=sin(B+C),
∵A+B+C=π,∴2sinAcosB=sinA,
∵0<A<π,∴sinA≠0,
∴cosB=
1
2

∵0<B<π,∴B=
π
3

(II)∵
m
=(sinA,1),
n
=(-1,1),
m
n
=-sinA+1,
由B=
π
3
得:A∈(0,
3
),
則當A=
π
2
時,
m
n
取得最小值0.
點評:此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,平面向量的數(shù)量積運算,誘導公式,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•日照一模)如圖,程序框圖所進行的求和運算是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•日照一模)若函數(shù)f(x)=
-cosπx,x>0
f(x+1)+1,x≤0
 則f(-
4
3
)的值為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•日照一模)給出下列四個命題:
①若a<b,則a2>b2;
②若a≥b>-1,則
a
1+a
b
1+b
;
③若正整數(shù)m和n滿足;m<n,則
m(n-m)
n
2

④若x>0,且x≠1,則lnx+
1
lnx
≥2

其中真命題的序號是
②③
②③
(請把真命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•日照一模)已知離心率為
4
5
的橢圓的中心在原點,焦點在x軸上,雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為2
34

(I)求橢圓及雙曲線的方程;
(Ⅱ)設橢圓的左、右頂點分別為A,B,在第二象限內取雙曲線上一點P,連結BP交橢圓于點M,連結PA并延長交橢圓于點N,若
BM
=
MP
.求四邊形ANBM的面積.

查看答案和解析>>

同步練習冊答案