在集合{a,b,c,d}上定義兩種運算⊕和?如下,那么d?(a⊕c)=(  )
A、aB、bC、cD、d
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應用
分析:由題意得a⊕c=c,得d?(a⊕c)d?c=a.
解答: 解:由題意得a⊕c=c,
∴d?(a⊕c)=d?c=a.
故選:A.
點評:本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點為F,過F的直線l交雙曲線的漸近線于A,B兩點,且與其中一條漸近線垂直,若
AF
=4
FB
,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項等比數(shù)列{an}中,3a1,
1
2
a3,2a2
成等差數(shù)列,則
a2011+a2012
a2009+a2010
=( 。
A、3或-1B、9或1C、1D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{xn}對任意的n∈N*,都有xn-2xn+1+xn+2<0成立,則稱數(shù)列{xn}為“亞等差數(shù)列”,設數(shù)列{an}是各項都為正數(shù)的等比數(shù)列,其前n項和為Sn,且a1=1,S1+S2+S3=
17
4

(1)求證:數(shù)列{Sn}是“亞等差數(shù)列”;
(2)設bn=(1-nan)t+n2an,若數(shù)列b3,b4,b5…,bm是“亞等差數(shù)列”,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
9
+
y2
16
=1上一點P到兩焦點距離的乘積為m,當m取得最大值時,點P的坐標是(  )
A、(3,0)和(-3,0)
B、(0,3)和(0,-3)
C、(4,0)和(-4,0)
D、(0,4)和(0,-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某志愿者服務隊有12名男隊員、x名女隊員.
(Ⅰ)若采用分層抽樣的方法隨機抽取20名志愿者參加技術培訓,抽取到的女隊員人數(shù)是16,求x的值;
(Ⅱ)若從A,B,C,D,E五人中任意抽取三人到某醫(yī)院去服務,求A隊員被抽到但B隊員沒被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的程序框圖中,該程序運行后輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩人玩數(shù)字游戲,甲讓乙在區(qū)間[0,9]上任意一個數(shù)x,若x滿足不等式1≤log2x≤2,就稱甲乙倆人“心有靈犀一點通”.則甲乙倆人“心有靈犀一點通”的概率為( 。
A、
1
9
B、
2
9
C、
1
3
D、
4
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定圓A:(x+
3
2+y2=16,圓心為A,動圓M過點B(
3
,0),且和圓A相切,動圓的圓心M的軌跡記為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若點P(x0,y0)為曲線C上一點,探究直線l:x0+4y0y-4=0與曲線C是否存在交點?若存在則求出交點坐標,若不存在請說明理由.

查看答案和解析>>

同步練習冊答案