分析 (1)求出$\overrightarrow{AB}=(2\sqrt{3},-2)$,設(shè)點(diǎn)P的坐標(biāo)為P(x,y),求出$\overrightarrow{AP}$,$\overrightarrow{AB}$繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{6}$角得到:$\overrightarrow{AP}$,列出方程求解即可.
(2)設(shè)旋轉(zhuǎn)前曲線C上的點(diǎn)為(x,y),旋轉(zhuǎn)后得到的曲線$y=\frac{1}{x}$上的點(diǎn)為(x',y'),通過$\left\{\begin{array}{l}x=x'cos\frac{π}{4}-y'sin\frac{π}{4}\\ y=x'sin\frac{π}{4}+y'sin\frac{π}{4}\end{array}\right.$整合求解即可.
解答 解:(1)∵A(2,3),$B(2+2\sqrt{3},5)$,∴$\overrightarrow{AB}=(2\sqrt{3},-2)$,
設(shè)點(diǎn)P的坐標(biāo)為P(x,y),則$\overrightarrow{AP}=(x-2,y-3)$…(2分
)$\overrightarrow{AB}$繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{6}$角得到:$\overrightarrow{AP}=(2\sqrt{3}cos\frac{π}{6}+2sin\frac{π}{6},2\sqrt{3}sin\frac{π}{6}-2cos\frac{π}{6})$=(4,0)…(4分)
∴(x-2,y-3)=(4,0)即$\left\{\begin{array}{l}x-2=4\\ y-3=0\end{array}\right.$,
∴$\left\{\begin{array}{l}x=6\\ y=3\end{array}\right.$,
即P(6,3)…(6分)
(2)設(shè)旋轉(zhuǎn)前曲線C上的點(diǎn)為(x,y),旋轉(zhuǎn)后得到的曲線$y=\frac{1}{x}$上的點(diǎn)為(x',y'),則$\left\{\begin{array}{l}x=x'cos\frac{π}{4}-y'sin\frac{π}{4}\\ y=x'sin\frac{π}{4}+y'sin\frac{π}{4}\end{array}\right.$解得:$\left\{\begin{array}{l}x'=\frac{{\sqrt{2}}}{2}(x+y)\\ y'=\frac{{\sqrt{2}}}{2}(y-x)\end{array}\right.$…(10分)
代入$y=\frac{1}{x}$得x'y'=1即y2-x2=2…(12分)
點(diǎn)評(píng) 本題考查軌跡方程的求法,向量的旋轉(zhuǎn),考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{4\sqrt{5}}{5}$ | C. | 3 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{32}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com