分析 根據(jù)等式$\frac{1}{k}$Cnk=$\frac{1}{n+1}$${C}_{n+1}^{k+1}$,…,利用二項式定理化簡等式即可得出結(jié)論.
解答 解:根據(jù)等式$\frac{1}{k}$Cnk=$\frac{1}{n+1}$${C}_{n+1}^{k+1}$,…,化簡等式:
Cn0•$\frac{1}{5}+\frac{1}{2}C_n^1•{({\frac{1}{5}})^2}+\frac{1}{3}C_n^2•{({\frac{1}{5}})^3}+…+\frac{1}{n+1}C_n^n•{({\frac{1}{5}})^{n+1}}$
=$\frac{1}{n+1}$${C}_{n+1}^{1}$•$\frac{1}{5}$+$\frac{1}{n+1}$•${C}_{n+1}^{2}$•${(\frac{1}{5})}^{2}$+$\frac{1}{n+1}$•${C}_{n+1}^{3}$•${(\frac{1}{5})}^{3}$+…+$\frac{1}{n+1}$•${C}_{n+1}^{n+1}$•${(\frac{1}{5})}^{n+1}$
=$\frac{1}{n+1}$[${C}_{n+1}^{1}$•$\frac{1}{5}$+${C}_{n+1}^{2}$•${(\frac{1}{5})}^{2}$+${C}_{n+1}^{3}$•${(\frac{1}{5})}^{3}$+…+${C}_{n+1}^{n+1}$•${(\frac{1}{5})}^{n+1}$]
=$\frac{1}{n+1}$[${(\frac{1}{5}+1)}^{n+1}$-${C}_{n+1}^{0}$]
=$\frac{1}{n+1}[{{{(\frac{6}{5})}^{n+1}}-1}]$.
故答案為:$\frac{1}{n+1}$[${(\frac{6}{5})}^{n+1}$-1].
點評 本題考查了組合數(shù)公式與二項式定理的應(yīng)用問題,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40π cm2 | B. | 80π cm2 | C. | 40 cm2 | D. | 80 cm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{7}{4}$ | C. | $\frac{5}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 193 | B. | 194 | C. | 195 | D. | 196 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{9}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
租用單車數(shù)量x(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
租用單車數(shù)量x(千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值$\stackrel{∧}{{y}_{i}}$(1) | 2.4 | 2.1 | 1.6 | ||
殘差$\stackrel{∧}{{e}_{i}}$(1) | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值$\stackrel{∧}{{y}_{i}}$ (2) | 2.3 | 2 | 1.9 | ||
殘差$\stackrel{∧}{{e}_{i}}$(2) | 0.1 | 0 | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com