如圖,已知,,分別是橢圓的四個(gè)頂點(diǎn),△是一個(gè)邊長(zhǎng)為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動(dòng)點(diǎn)(點(diǎn)異于端點(diǎn),),直線分別交線段,橢圓于點(diǎn),,直線交于點(diǎn)
(。┣的最大值;
(ⅱ)試問(wèn):..,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
(1),,(2)(。,(ⅱ).

試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,只需兩個(gè)獨(dú)立條件. 由題意知,,,所以,,所以橢圓的方程為,求圓的方程,有兩個(gè)選擇,一是求圓的標(biāo)準(zhǔn)方程,確定圓心與半徑,二是求圓的一般方程,只需代入圓上三個(gè)點(diǎn)的坐標(biāo).本題兩個(gè)方法皆簡(jiǎn)單,如易得圓心,,所以圓的方程為
(2)(。┍绢}關(guān)鍵分析出比值暗示的解題方向,由于點(diǎn)軸上,所以,因此解題方向?yàn)槔眯甭史謩e表示出點(diǎn)與點(diǎn)的橫坐標(biāo). 設(shè)直線的方程為,與直線的方程聯(lián)立,解得點(diǎn),聯(lián)立,消去并整理得,,解得點(diǎn),因此當(dāng)且僅當(dāng)時(shí),取“=”,所以的最大值為.(ⅱ)求出點(diǎn)的橫坐標(biāo),分析與點(diǎn)的橫坐標(biāo)的和是否為常數(shù). 直線..的方程為,與直線的方程聯(lián)立,解得點(diǎn),所以、兩點(diǎn)的橫坐標(biāo)之和為
試題解析:(1)由題意知,,
所以,,所以橢圓的方程為,                    2分
易得圓心,,所以圓的方程為.  4分
(2)解:設(shè)直線的方程為,
與直線的方程聯(lián)立,解得點(diǎn),          6分
聯(lián)立,消去并整理得,,解得點(diǎn),
9分 
(。,當(dāng)且僅當(dāng)時(shí),取“=”,
所以的最大值為.                                       12分
(ⅱ)直線的方程為
與直線的方程聯(lián)立,解得點(diǎn),      14分
所以兩點(diǎn)的橫坐標(biāo)之和為
、兩點(diǎn)的橫坐標(biāo)之和為定值,該定值為.                 16分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,在第一和第四象限的交點(diǎn)分別為.
(1)若是邊長(zhǎng)為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)任意非零實(shí)數(shù),定義的算法原理如右側(cè)程序框圖所示.設(shè)為函數(shù)的最大值,為雙曲線的離心率,則計(jì)算機(jī)執(zhí)行該運(yùn)算后輸出的結(jié)果是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,離心率為.
(1)求橢圓C的方程;
(2)設(shè)A,B是橢圓C上的兩點(diǎn),△AOB的面積為.若A、B兩點(diǎn)關(guān)于x軸對(duì)稱,E為線段AB的中點(diǎn),射線OE交橢圓C于點(diǎn)P.如果=t,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓C:的左、右頂點(diǎn)分別為A1、A2,點(diǎn)P在C上且直線PA2斜率的取值范圍是[﹣2,﹣1],那么直線PA1斜率的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn)的橢圓C: 的一個(gè)焦點(diǎn)為為橢圓C上一點(diǎn),△MOF2的面積為.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線l,使得l與橢圓C相交于A、B兩點(diǎn),且以線段AB為直徑的圓恰好過(guò)原點(diǎn)?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是任意實(shí)數(shù),則方程所表示的曲線一定不是(    )
A.直線B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是雙曲線的左焦點(diǎn),離心率為e,過(guò)F且平行于雙曲線漸近線的直線與圓交于點(diǎn)P,且點(diǎn)P在拋物線上,則e2 =(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

坐標(biāo)平面上有兩個(gè)定點(diǎn)A,B和動(dòng)點(diǎn)P,如果直線PA,PB的斜率之積為定值m,則點(diǎn)P的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.試將正確的序號(hào)填在橫線上:         .

查看答案和解析>>

同步練習(xí)冊(cè)答案