已知?jiǎng)狱c(diǎn)與定點(diǎn)的距離和它到直線(xiàn)的距離之比是常數(shù),記的軌跡為曲線(xiàn).
(I)求曲線(xiàn)的方程;
(II)設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,試問(wèn):當(dāng)變化時(shí),直線(xiàn)與軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.
(I);(II)對(duì)于任意的,直線(xiàn)與軸交于定點(diǎn).
【解析】
試題分析:(I)找出題中的相等關(guān)系,列出,化簡(jiǎn)即得曲線(xiàn)的方程;(II)將直線(xiàn)方程代入曲線(xiàn)方程,消去得,記,則,且.特別地,令,則.此時(shí),直線(xiàn)與軸的交點(diǎn)為.若直線(xiàn)與軸交于一個(gè)定點(diǎn),則定點(diǎn)只能為.再證明對(duì)于任意的,直線(xiàn)與軸交于定點(diǎn),可利用直線(xiàn)的兩點(diǎn)式方程結(jié)合分析法.
試題解析:(I)設(shè)是點(diǎn)到直線(xiàn)的距離,根據(jù)題意,點(diǎn)的軌跡就是集合
由此得
將上式兩邊平方,并化簡(jiǎn)得
即,所以曲線(xiàn)的方程為
(II)由得,即.
記,
則,且.
特別地,令,則.
此時(shí),直線(xiàn)與軸的交點(diǎn)為.
若直線(xiàn)與軸交于一個(gè)定點(diǎn),則定點(diǎn)只能為.
以下證明對(duì)于任意的,直線(xiàn)與軸交于定點(diǎn).
事實(shí)上,經(jīng)過(guò)點(diǎn)的直線(xiàn)方程為.
令,得只需證,
即證,即證.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092623522294049135/SYS201309262353311656635842_DA.files/image041.png">,
所以成立.
這說(shuō)明,當(dāng)變化時(shí),直線(xiàn)與軸交于定點(diǎn). …
考點(diǎn):1、曲線(xiàn)方程求法;2、直線(xiàn)與圓錐曲線(xiàn)位置關(guān)系;3、定點(diǎn)問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離與點(diǎn)到定直線(xiàn):的距離之比為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)、是直線(xiàn)上的兩個(gè)點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分14分)已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離與點(diǎn)到定直線(xiàn):的距離之比為.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)、是直線(xiàn)上的兩個(gè)點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大,設(shè)動(dòng)點(diǎn)的軌跡是曲線(xiàn).
(1)求曲線(xiàn)的軌跡方程;
(2) 設(shè)直線(xiàn):與曲線(xiàn)相交于、兩點(diǎn),已知圓經(jīng)過(guò)原點(diǎn)和兩點(diǎn),求圓的方程,并判斷點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)是否在圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年黑龍江佳木斯市高三第三次調(diào)研文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知?jiǎng)狱c(diǎn)到定點(diǎn)與到定點(diǎn)的距離之比為.
(1)求動(dòng)點(diǎn)的軌跡C的方程,并指明曲線(xiàn)C的軌跡;
(2)設(shè)直線(xiàn),若曲線(xiàn)C上恰有三個(gè)點(diǎn)到直線(xiàn)的距離為1,求實(shí)數(shù)的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com