函數(shù)f(x)=
+(x-4)
0的定義域?yàn)椋ā 。?/div>
分析:原函數(shù)有指數(shù)式和根式,讓指數(shù)式的底數(shù)不等于0,根式內(nèi)部的代數(shù)式大于等于0,然后取交集.
解答:解:要使原函數(shù)有意義,則需
,
解得:x>2,且x≠4,所以原函數(shù)的定義域?yàn)閧x|x>2,x≠4}.
故選A.
點(diǎn)評:本題考查了函數(shù)定義域及其求法,屬于以函數(shù)的定義為平臺,求集合的交集的基礎(chǔ)題,也是高考常會考的題型.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)函數(shù)f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
,求a的值;
(2)關(guān)于x的不等式(x-1)
2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)
a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2012•深圳一模)已知函數(shù)
f(x)=x3+bx2+cx+d,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)
g(x)=x , m>0,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2011•上海模擬)已知函數(shù)
f(x)=(-1)2+(-1)2,x∈(0,+∞),其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2
m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k
2,b=(k+c)
2時(shí),記f(x)=f
1(x);當(dāng)a=(k+c)
2,b=(k+2c)
2時(shí),記f(x)=f
2(x).
求證:
f1(x)+f2(x)>.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:上海模擬
題型:解答題
已知函數(shù)
f(x)=(-1)2+(-1)2,x∈(0,+∞),其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2
m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k
2,b=(k+c)
2時(shí),記f(x)=f
1(x);當(dāng)a=(k+c)
2,b=(k+2c)
2時(shí),記f(x)=f
2(x).
求證:
f1(x)+f2(x)>.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:徐州模擬
題型:解答題
設(shè)函數(shù)f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2,求a的值;
(2)關(guān)于x的不等式(x-1)
2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)
a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.
查看答案和解析>>