17.已知流程圖如圖,則輸出的n=8.

分析 由已知中的程序語(yǔ)句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運(yùn)行,可得
S=0,n=1
執(zhí)行循環(huán)體,S=log${\;}_{2}^{\frac{2}{3}}$=-log${\;}_{2}^{3}$,n=2
不滿足條件S<-3,執(zhí)行循環(huán)體,S=-log${\;}_{2}^{3}$+log${\;}_{2}^{\frac{3}{4}}$=-2,n=3
不滿足條件S<-3,執(zhí)行循環(huán)體,S=-2+log${\;}_{2}^{\frac{4}{5}}$=-log${\;}_{2}^{5}$,n=4
不滿足條件S<-3,執(zhí)行循環(huán)體,S=-log${\;}_{2}^{5}$+log${\;}_{2}^{\frac{5}{6}}$=-log${\;}_{2}^{6}$,n=5
不滿足條件S<-3,執(zhí)行循環(huán)體,S=-log${\;}_{2}^{6}$+log${\;}_{2}^{\frac{6}{7}}$=-log${\;}_{2}^{7}$,n=6
不滿足條件S<-3,執(zhí)行循環(huán)體,S=-log${\;}_{2}^{7}$+log${\;}_{2}^{\frac{7}{8}}$=-3,n=7
不滿足條件S<-3,執(zhí)行循環(huán)體,S=-3+log${\;}_{2}^{\frac{8}{9}}$=-log${\;}_{2}^{9}$,n=8
此時(shí),滿足條件S<-3,退出循環(huán),輸出n的值為8.
故答案為:8.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知不等式|x-3|+|x-4|<a
(1)當(dāng)a=2時(shí),解此不等式;
(2)若|x-3|+|x-4|<a解集為∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2cosθ.
(1)求曲線C在直角坐標(biāo)系中的標(biāo)準(zhǔn)方程和直線l的普通方程;
(2)若直線l與曲線C交于不同的兩點(diǎn)A,B,點(diǎn)M在區(qū)間曲線C上移動(dòng),求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若將一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具),先后拋擲兩次,則出現(xiàn)向上的點(diǎn)數(shù)之和小于10的概率是( 。
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=log2(ax2-4ax+6).
(1)當(dāng)a=1時(shí),求不等式f(x)≥log23的解集;
(2)若f(x)的定義域?yàn)镽,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一射手對(duì)同一目標(biāo)獨(dú)立地射擊四次,已知至少命中一次的概率為$\frac{80}{81}$,則此射手每次射擊命中的概率( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)$f(x)=\frac{1}{{\sqrt{x+3}}}+{log_2}(6-x)$的定義域是(  )
A.(6,+∞)B.[-3,6)C.(-3,+∞)D.(-3,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.中國(guó)有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來(lái)進(jìn)行計(jì)算,算籌是將幾寸長(zhǎng)的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位數(shù)用縱式表示,十位,千位,十萬(wàn)位用橫式表示,以此類推,例如6613用算籌表示就是:,則算籌式表示的數(shù)字為368.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知曲線C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1,直線:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(為參數(shù)).寫出曲線C的參數(shù)方程,直線的普通方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案