【題目】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:

(1)長(zhǎng)軸長(zhǎng)是10,離心率是

(2)在x軸上的一個(gè)焦點(diǎn),與短軸兩個(gè)端點(diǎn)的連線(xiàn)互相垂直,且焦距為6.

【答案】(1)+=1+=1;(2)+=1

【解析】

(1)設(shè)出橢圓的方程,根據(jù)a,c的值求出b的值,求出橢圓的標(biāo)準(zhǔn)方程即可;

(2)設(shè)橢圓的標(biāo)準(zhǔn)方程為,a>b>0,由已知條件推導(dǎo)出c=b=3,由此能求出橢圓的標(biāo)準(zhǔn)方程.

解:(1)設(shè)橢圓的方程為:+=1(ab>0)或+=1(ab>0),

由已知得:2a=10,a=5,e==,故c=4,

b2=a2-c2=25-16=9,

故橢圓的方程是:+=1+=1;

(2)設(shè)橢圓的標(biāo)準(zhǔn)方程為+=1,ab>0,

x軸上的一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線(xiàn)互相垂直,且焦距為6,如圖所示,

∴△A1FA2為一等腰直角三角形,OF為斜邊A1A2的中線(xiàn)(高),且OF=c,A1A2=2b,

c=b=3.∴a2=b2+c2=18.

故所求橢圓的方程為+=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市化工廠三個(gè)車(chē)間共有工人1000名,各車(chē)間男、女工人數(shù)如下表:已知在全廠工人中隨機(jī)抽取1名,抽到第二車(chē)間男工的可能性是0.15.

第一車(chē)間

第二車(chē)間

第三車(chē)間

女工

173

100

y

男工

177

x

z

(1)求x的值.

(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,則應(yīng)在第三車(chē)間抽取多少名工人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面ABCD底面是邊長(zhǎng)為2的正方形, 的中點(diǎn),的中點(diǎn).

(1)求直線(xiàn)MN與直線(xiàn)CD所成角的余弦值;

(2)求直線(xiàn)OB與平面OCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家外賣(mài)公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成3元;乙公司無(wú)底薪,40單以?xún)?nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元.假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到頻數(shù)表如下.

甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

20

40

20

10

10

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

20

20

40

10

根據(jù)上表數(shù)據(jù),利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí):

(1)求甲公司送餐員日平均工資

(2)某人擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日平均工資的角度考慮,他應(yīng)該選擇去哪家公司應(yīng)聘,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20171018日至1024日,中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)簡(jiǎn)稱(chēng)黨的“十九大”在北京召開(kāi)一段時(shí)間后,某單位就“十九大”精神的領(lǐng)會(huì)程度隨機(jī)抽取100名員工進(jìn)行問(wèn)卷調(diào)查,調(diào)查問(wèn)卷共有20個(gè)問(wèn)題,每個(gè)問(wèn)題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績(jī)都在內(nèi),按成績(jī)分成5組:第1,第2,第3,第4,第5,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對(duì)“十九大”精神作深入學(xué)習(xí).

求這100人的平均得分同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;

求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);

若甲、乙、丙都被選取對(duì)“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機(jī)選取2人再全面考查他們對(duì)“十九大”精神的領(lǐng)會(huì)程度,求甲、乙、丙這3人至多有一人被選取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率為,動(dòng)點(diǎn)M2t)(.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求以OM為直徑且截直線(xiàn)所得的弦長(zhǎng)為2的圓的方程;

3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)FOM的垂線(xiàn)與以OM為直徑的圓交于點(diǎn)N,證明線(xiàn)段ON的長(zhǎng)為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一圓的圓心在直線(xiàn)上,且該圓經(jīng)過(guò)兩點(diǎn).

1)求圓的標(biāo)準(zhǔn)方程;

2)若斜率為的直線(xiàn)與圓相交于,兩點(diǎn),試求面積的最大值和此時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的敘述錯(cuò)誤的是(

A. 對(duì)于命題p: ,則 .

B. 命題的逆否命題為”.

C. 為假命題,則均為假命題.

D. 的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

某初級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如下表:


初一年級(jí)

初二年級(jí)

初三年級(jí)

女生

373

x

y

男生

377

370

z

已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級(jí)女生的概率是0.19.

x的值;

現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問(wèn)應(yīng)在初三年級(jí)抽取多少名?

已知y245,z245,求初三年級(jí)中女生比男生多的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案