已知{an}是等差數(shù)列,且a3+a9=4a5,a2=-8,則該數(shù)列的公差是


  1. A.
    4
  2. B.
    數(shù)學公式
  3. C.
    -4
  4. D.
    -14
A
分析:由題意可得:a1+5d=2a1+8d,a1+d=-8,進而得到答案.
解答:因為a3+a9=4a5
所以根據(jù)等差數(shù)列的性質可得:a6=2a5,
所以a1+5d=2a1+8d,
又因為a2=-8,即a1+d=-8,
所以可得公差d=4.
故選A.
點評:解決此類問題關鍵是熟練掌握等差數(shù)列的性質,以及等差數(shù)列的通項公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù){an}的前n項和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶市南開中學高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案