18.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)圖象的一個對稱中心為($\frac{π}{12}$,0),且圖象上相鄰兩條對稱軸間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos(α+$\frac{3π}{2}$)的值.

分析 (1)由題意和三角函數(shù)圖象特點可得周期,可得ω=2,代點計算可得φ=-$\frac{π}{6}$,可得解析式為f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$);
(2)由題意可得sin(α-$\frac{π}{6}$)=$\frac{1}{4}$,由同角三角函數(shù)基本關(guān)系可得cos(α-$\frac{π}{6}$)=$\frac{\sqrt{15}}{4}$,代入cos(α+$\frac{3π}{2}$)=sinα=sin[(α-$\frac{π}{6}$)+$\frac{π}{6}$]=$\frac{\sqrt{3}}{2}$sin(α-$\frac{π}{6}$)+$\frac{1}{2}$cos(α-$\frac{π}{6}$)計算可得.

解答 解:(1)∵函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)圖象的一個對稱中心為($\frac{π}{12}$,0),
∴$\sqrt{3}$sin($\frac{π}{12}$ω+φ)=0,又圖象上相鄰兩條對稱軸間的距離為$\frac{π}{2}$,
∴周期T滿足T=$\frac{2π}{ω}$=2×$\frac{π}{2}$,解得ω=2,∴$\sqrt{3}$sin($\frac{π}{6}$+φ)=0,
結(jié)合-$\frac{π}{2}$≤φ<$\frac{π}{2}$可得φ=-$\frac{π}{6}$,故f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$);
(2)∵f($\frac{α}{2}$)=$\sqrt{3}$sin(α-$\frac{π}{6}$)=$\frac{\sqrt{3}}{4}$,∴sin(α-$\frac{π}{6}$)=$\frac{1}{4}$,
又$\frac{π}{6}$<α<$\frac{2π}{3}$,∴0<α-$\frac{π}{6}$<$\frac{π}{2}$,故cos(α-$\frac{π}{6}$)=$\frac{\sqrt{15}}{4}$,
∴cos(α+$\frac{3π}{2}$)=sinα=sin[(α-$\frac{π}{6}$)+$\frac{π}{6}$]
=$\frac{\sqrt{3}}{2}$sin(α-$\frac{π}{6}$)+$\frac{1}{2}$cos(α-$\frac{π}{6}$)
=$\frac{\sqrt{3}}{2}×\frac{1}{4}$+$\frac{1}{2}×\frac{\sqrt{15}}{4}$=$\frac{\sqrt{3}+\sqrt{15}}{8}$

點評 本題考查三角函數(shù)解析式的求解和三角函數(shù)公式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在極坐標(biāo)系中,P為曲線C1:p=2cosθ上的任意一點,點Q在射線OP上,且滿足|OP|•|OQ|=6,記Q點的軌跡為C2
(Ⅰ)求曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l:θ=$\frac{π}{3}$分別交C1與C2于點A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x≤0}\\{cos(2x+\frac{π}{6}),x>0}\end{array}\right.$,若f[f($\frac{π}{4}$)]=$\frac{1}{3}$,則實數(shù)a等于( 。
A.16B.9C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?dāng)?shù)列{an}滿足a1=1,且an+1-an=n+1(n∈N+),則數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前10項和為( 。
A.$\frac{2}{5}$B.$\frac{20}{11}$C.$\frac{11}{20}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知一個正方形的邊長為6,現(xiàn)用直徑為2的硬幣投擲到此正方方形上,則硬幣落下后與此正方形的邊有公共點的概率為( 。
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=2sinx(-π≤x≤π)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x)其中(a>0且a≠1),設(shè)h(x)=f(x)-g(x)
(Ⅰ)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性,并說明理由.
(Ⅱ)若f(3)=2,求使h(x)<0成立的x的集合.
(Ⅲ)若a>1,當(dāng)$x∈[0,\frac{1}{2}]$時,h(x)∈[0,1],求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)y=$\sqrt{3}$cos2x-sinxcosx+3的最大值、最小值和周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知sin(45°-α)=-$\frac{2}{3}$,且45°<α<90°,求sinα=$\frac{\sqrt{10}+2\sqrt{2}}{6}$.

查看答案和解析>>

同步練習(xí)冊答案