已知圓圓動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點,當(dāng)圓的半徑最長時,求.
(1) (2)
解析試題分析:解:(1)圖略:設(shè)動圓半徑設(shè)為動圓與圓外切,即:
動圓與圓內(nèi)切,即兩式相加得:.
點的軌跡是以為焦點的橢圓,
因焦點在x軸上,所以的軌跡方程是,
(2)動圓的半徑設(shè)為則
把代入整理得 此時圓心圓的方程是
與圓,圓都相切,若傾斜角等于為所求;
傾斜角不等于
與圓:,圓都相切,
,且 整理(1)(2)得
聯(lián)立(3)(4),得
切線方程為或,由于對稱性,兩切線與橢圓相交的弦長相等
不妨聯(lián)立與整理得:
(求根公式,兩點距離也可以);(用另一條弦長公式也可以)
,綜上(略)
考點:橢圓的方程;直線與橢圓的位置關(guān)系
點評:關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點時,常用到根與系數(shù)的關(guān)系式:()。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知分別是橢圓的左、右頂點,點在橢圓上,且直線與直線的斜率之積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓上不同于頂點的兩點,直線與交于點,直線與交于點.① 求證:;② 若弦過橢圓的右焦點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,離心率,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與曲線的交點為、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點D為極點,以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為,曲線C2的參數(shù)方程為為參數(shù))。
(1)當(dāng)時,求曲線Cl與C2公共點的直角坐標(biāo);
(2)若,當(dāng)變化時,設(shè)曲線C1與C2的公共點為A,B,試求AB中點M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓,是長軸的左、右端點,動點滿足,聯(lián)結(jié),交橢圓于點.
(1)當(dāng),時,設(shè),求的值;
(2)若為常數(shù),探究滿足的條件?并說明理由;
(3)直接寫出為常數(shù)的一個不同于(2)結(jié)論類型的幾何條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦距為4,且過點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)為橢圓上一點,過點作軸的垂線,垂足為。取點,連接,過點作的垂線交軸于點。點是點關(guān)于軸的對稱點,作直線,問這樣作出的直線是否與橢圓C一定有唯一的公共點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線的焦點為F,準(zhǔn)線與x軸的交點為A.點C在拋物線E上,以C為圓心,為半徑作圓,設(shè)圓C與準(zhǔn)線交于不同的兩點M,N.
(I)若點C的縱坐標(biāo)為2,求;
(II)若,求圓C的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com