12.已知函數(shù)f(x)=$\sqrt{2-\frac{x+6}{x+2}}$的定義域為A,B={x|x2-(m+3)x+3m<0,m∈R}.
(1)若(∁RA)∩B=(1,2),求實數(shù)m的值;
(2)若A∪B=A,求實數(shù)m的值.

分析 (1)求出f(x)的定義域確定出A,表示出B中不等式的解集,根據(jù)A的補集與B的交集確定出m的范圍即可;
(2)根據(jù)A與B的并集為A,得到B為A的子集,確定出m的范圍即可.

解答 解:(1)由函數(shù)f(x)=$\sqrt{2-\frac{x+6}{x+2}}$,得到2-$\frac{x+6}{x+2}$≥0,即$\frac{x-2}{x+2}$≥0,
解得:x<-2或x≥2,即A=(-∞,-2)∪[2,+∞),
∴∁RA=[-2,2),
由B中不等式變形得:(x-3)(x-m)<0,
當m>3時,解集為3<x<m,不合題意;
當m<3時,解集為m<x<3,即B=(m,3),
∵(∁RA)∩B=(1,2),
∴m=1;
(2)∵A∪B=A,
∴B⊆A,
當m=3時,B=∅,滿足題意;
當m>3時,解集為3<x<m,即B=(3,m),滿足題意;
當m<3時,解集為m<x<3,即B=(m,3),此時m≥2,
綜上,m的范圍為m≥2.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.執(zhí)行如圖的程序后,輸出的值是(  )
A.17B.19C.21D.23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知M={x|($\frac{1}{2}$)x<2},N={x|log2x<1},則M∩N=(  )
A.{x|x>-1}B.{x|-1<x<2}C.{x|0<x<2}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在平面直角坐標系中,動點P(x,y)到兩條坐標軸的距離之和等于它到點(1,1)的距離,記點P的軌跡為曲線W,則下列命題中:
①曲線W關于原點對稱;            
②曲線W關于x軸對稱;
③曲線W關于y軸對稱;            
④曲線W關于直線y=x對稱
所有真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且長軸長等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)F1,F(xiàn)2是橢圓C的兩個焦點,⊙O是以F1,F(xiàn)2為直徑的圓,直線l:y=kx+m與⊙O相切,并與橢圓C交于不同的兩點A,B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設F1(-c,0),F(xiàn)2(c,0)分別為橢圓E:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4-m}$=1的左、右焦點.
(1)若橢圓的離心率是$\frac{\sqrt{6}}{3}$,求橢圓的方程,并寫出m的取值范圍;
(2)設P(x0,y0)為橢圓E上一點,且在第一象限內(nèi),直線F2P與y軸相交于點Q,若以PQ為直徑的圓經(jīng)過點F1,證明:點P在直線x+y-2=0上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知a為常數(shù),函數(shù)$f(x)=xlnx-\frac{1}{2}a{x^2}$,
(1)當a=0時,求函數(shù)f(x)的最小值;
(2)若f(x)有兩個極值點x1,x2(x1<x2
①求實數(shù)a的取值范圍;
②求證:$f({x_1})<-\frac{1}{e}$且x1x2>1(其中e為自然對數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點是F,點D(1,y0)是拋物線上的點,且|DF|=2.
(I)求拋物線C的標準方程;
(Ⅱ)過定點M(m,0)(m>0)的直線與拋物線C交于A,B兩點,與y軸交于點N,且滿足:$\overrightarrow{NA}$=λ$\overrightarrow{AM}$,$\overrightarrow{NB}$=μ$\overrightarrow{BM}$.
(i)當m=$\frac{p}{2}$時,求證:λ+μ為定值;
(ii)若點R是直線l:x=-m上任意一點,三條直線AR,BR,MR的斜率分別為kAR,kBR,kMR,問是否存在常數(shù)t,使得.kAR+kBR=t•kMR.恒成立?若存在求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知不等式|a-2x|>x-1,對任意x∈[1,2]恒成立,則a的取值范圍為(-∞,2)∪(5,+∞).

查看答案和解析>>

同步練習冊答案