(普通文科做)已知f(x)=
1
3
x3-x2+ax在區(qū)間[-2,5]上單調(diào)遞減,則a的范圍為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計算題,導(dǎo)數(shù)的綜合應(yīng)用,不等式的解法及應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),由于f(x)在區(qū)間[-2,5]上單調(diào)遞減,則f′(x)≤0區(qū)間[-2,5]上恒成立,即有f′(-2)≤0且f′(5)≤0,解出不等式求交集即可.
解答: 解:f(x)=
1
3
x3-x2+ax的導(dǎo)數(shù)為:
f′(x)=x2-2x+a,
由于f(x)在區(qū)間[-2,5]上單調(diào)遞減,
則f′(x)≤0區(qū)間[-2,5]上恒成立,
即有f′(-2)≤0且f′(5)≤0,
即8+a≤0且15+a≤0,
解得a≤-15.
故答案為:(-∞,-15].
點(diǎn)評:本題考查導(dǎo)數(shù)的運(yùn)用:判斷函數(shù)的單調(diào)性,考查不等式恒成立思想運(yùn)用二次函數(shù)的性質(zhì),考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線兩焦點(diǎn)F1,F(xiàn)2,其中F1y=-
1
4
(x+1)2+1
的焦點(diǎn),兩點(diǎn)A (-3,2)B (1,2)都在雙曲線上,
(1)求點(diǎn)F1的坐標(biāo);
(2)求點(diǎn)F2的軌跡方程;
(3)若直線y=x+t與F2的軌跡方程有且只有一個公共點(diǎn),求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y)是橢圓x2+
y2
4
=1上的一個動點(diǎn),則x2+y2的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱柱 ABC-A1B1C1′中,∠ABC=90°,AA1=AC=BC=2,A1在底面ABC內(nèi)的射影為AC的中點(diǎn)D.
(1)求證:BA1⊥AC1;
(2)求三棱錐 B1-A1DB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等級產(chǎn)品一等二等甲5(萬元)2.5(萬元)乙2.5(萬元)1.5(萬元)利潤項目產(chǎn)品工人(名)資金(萬元)甲88乙210用量工序產(chǎn)品第一工序第二工序甲0.80.85乙0.750.8概率某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過第一和第二工序加工而成,兩道工序的加工結(jié)果相互獨(dú)立,每道工序的加工結(jié)果均有A、B兩個等級.對每種產(chǎn)品,兩道工序的加工結(jié)果都為A級時,產(chǎn)品為一等品,其余均為二等品.
(1)已知甲、乙兩種產(chǎn)品每一道工序的加工結(jié)果為A級的概率如表一所示,分別求生產(chǎn)出的甲、乙產(chǎn)品為一等品的概率P、P
(2)已知一件產(chǎn)品的利潤如表二所示,用ξ、η分別表示一件甲、乙產(chǎn)品的利潤,在(1)的條件下,求ξ、η的分布列及Eξ、Eη;
(3)已知生產(chǎn)一件產(chǎn)品需用的工人數(shù)和資金額如表三所示.該工廠有工人40名,可用資.金60萬元.設(shè)x、y分別表示生產(chǎn)甲、乙產(chǎn)品的數(shù)量,在(II)的條件下,x、y為何值時,Z=xEξ+yEη最大?最大值是多少?(解答時須給出圖示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足方程x2+y2-4x+1=0,則
y
x+1
的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的是某單位的男職工進(jìn)行健康體檢時的體重情況的頻率分布直方圖,已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為24,那么該單位共有男職工的人數(shù)為( 。
A、150B、120
C、48D、96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1+cosα
sinα
=2,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知彈道曲線的參數(shù)方程為
x=v0tcosα
y=v0tsinα-
1
2
gt2
,g是重力加速度.
(1)求發(fā)射角α=
π
3
時,彈道曲線的普通方程和射程;
(2)設(shè)v0是定值,α是變量,求證:α=
π
4
時射程最大.

查看答案和解析>>

同步練習(xí)冊答案