【題目】已知橢圓的左頂點(diǎn)為,左、右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn)(不與左、右頂點(diǎn)重合),且的周長為6,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,直線交于點(diǎn).

1)求橢圓方程;

2)若直線與橢圓交于另一點(diǎn),且,求點(diǎn)的坐標(biāo).

【答案】1;(2

【解析】

1)根據(jù)的周長為,結(jié)合離心率,求出,即可求出方程;

2)設(shè),則,求出直線方程,若斜率不存在,求出坐標(biāo),直接驗(yàn)證是否滿足題意,若斜率存在,求出其方程,與直線方程聯(lián)立,求出點(diǎn)坐標(biāo),根據(jù)三點(diǎn)共線,將點(diǎn)坐標(biāo)用表示,坐標(biāo)代入橢圓方程,即可求解.

1)因?yàn)闄E圓的離心率為,的周長為6,

設(shè)橢圓的焦距為,則

解得,,

所以橢圓方程為.

2)設(shè),則,且,

所以的方程為.

,則的方程為②,由對(duì)稱性不妨令點(diǎn)軸上方,

,聯(lián)立①,②解得.

的方程為,代入橢圓方程得

,整理得,

.

,不符合條件.

,則的方程為,

.

聯(lián)立①,③可解得所以.

因?yàn)?/span>,設(shè)

所以,即.

又因?yàn)?/span>位于軸異側(cè),所以.

因?yàn)?/span>三點(diǎn)共線,即應(yīng)與共線,

所以,即,

所以,又,

所以,解得,所以,

所以點(diǎn)的坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:

(1)四面體EBCD的體積有最大值和最小值;

(2)存在某個(gè)位置,使得;

(3)設(shè)二面角的平面角為,則;

(4)AE的中點(diǎn)MAB的中點(diǎn)N連線交平面BCD于點(diǎn)P,則點(diǎn)P的軌跡為橢圓.

其中,正確說法的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):

若分?jǐn)?shù)不低于95分,則稱該員工的成績?yōu)?/span>優(yōu)秀”.

1)從這20人中任取3人,求恰有1人成績優(yōu)秀的概率;

2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.

組別

分組

頻數(shù)

頻率

1

2

3

4

①估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

②若從所有員工中任選3人,記表示抽到的員工成績?yōu)?/span>優(yōu)秀的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(  )

A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”

B.x=-1”是“x2-5x-6=0”的必要不充分條件

C.命題“若xy,則sin x=sin y”的逆否命題為真命題

D.命題“x0∈R使得”的否定是“x∈R,均有x2x+1<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為2,離心率為,,分別是橢圓的右頂點(diǎn)和下頂點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知是橢圓內(nèi)一點(diǎn),直線的斜率之積為,直線分別交橢圓于兩點(diǎn),記,的面積分別為,.

①若兩點(diǎn)關(guān)于軸對(duì)稱,求直線的斜率;

②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,若對(duì)于,,使得成立,則稱集合M是“互垂點(diǎn)集”.給出下列四個(gè)集合:;;;.其中是“互垂點(diǎn)集”集合的為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,直線經(jīng)過點(diǎn),直線經(jīng)過點(diǎn),直線直線,且直線分別與橢圓相交于兩點(diǎn)和兩點(diǎn).

()分別為橢圓的左、右焦點(diǎn),且直線軸,求四邊形的面積;

()若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;

()()的條件下,判斷四邊形能否為矩形,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,試討論的單調(diào)性;

2)若,實(shí)數(shù)為方程的兩不等實(shí)根,求證:.

查看答案和解析>>

同步練習(xí)冊答案