【題目】(2015新課標II)已知橢圓C:9x2+y2=m2(m0),直線l不過原點O且不平行于坐軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)(I)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)(II)若l過點(,m)延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率,若不能,說明理由.

【答案】
(1)

【證明】設(shè)直線l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xm,ym

將y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故xM==,yM=KXM+b=,于是直線OM的斜率KOM==-,即KOMk=-9,所以直線OM的斜率與l的斜率乘積為定值。


(2)

當(dāng)l的斜率為4-或4+時,四邊形OAPB為平行四邊形


【解析】(II)四邊形OAPB能為平行四邊形
因為直線l過點(,m),所以l不過原點且與C又兩個交點的充要條件是k0,k≠3
由(I)得OM的方程為y=-x,設(shè)點P的橫坐標為xP
==,將點(,m)的坐標代入直線l的方程得b=,因此,四邊形OAPB為平行四邊形當(dāng)且僅當(dāng)線段AB與線段OP互相平分,即=2。
于是=2x.解得k1=4-,k2=4+
因為ki0,ki≠3,i=1,2.所以當(dāng)l的斜率為4-或4+時,四邊形OAPB為平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住一帶一路帶來的機遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬元, 每生產(chǎn)臺,需另投入成本(萬元), 當(dāng)年產(chǎn)量不足臺時, (萬元); 當(dāng)年產(chǎn)量不小于臺時 (萬元), 若每臺設(shè)備售價為萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)能全部.

(1)求年利潤 (萬元)關(guān)年產(chǎn)(臺)的函數(shù)關(guān)系式;

(2)年產(chǎn)為多少臺時 ,該企業(yè)在這一電子設(shè)的生產(chǎn)中所獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過點(﹣4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式 恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F分別在A1B1,D1C1上,A1E=D1F=4.過點E,F的平面與此長方體的面相交,交線圍成一個正方形。

(1)(I)在圖中畫出這個正方形(不必說明畫法與理由);
(2)(II)求平面 把該長方體分成的兩部分體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

(2015·新課標Ⅱ)設(shè)函數(shù)f(x)是奇函數(shù)f(x)(xR)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x0時,xf'(x)-f(x)0,則使得f(x)0成立的x的取值范圍是()


A.(-,-1)(0,1)
B.(-1,0)(1,+
C.(-,-1)(-1,0)
D.(0,1)(1,+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b,c,d均為正數(shù),且a+b=c+d,證明:
(1)若abcd,則++;
(2)++是|a-b||c-d|的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·新課標I卷)已知函數(shù)fx)=x3+ax+, g(x)=-lnx.
(1)當(dāng)a為何值時,x軸為曲線y=f(x)的切線;
(2)用min{m,n} 表示m,n中的最小值,設(shè)函數(shù)h(x)=min{f(x),g(x)}(x>0),,討論hx)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·四川)一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.

(1)請按字母F , G , H標記在正方體相應(yīng)地頂點處(不需要說明理由)
(2)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論.
(3)證明:直線DF⊥平面BEG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖南)設(shè)數(shù)列{an}的前n項和為Sn , 已知a1=1, a2=2,且an+1=3Sn-Sn+1+3(n)
(1)證明:an+2=3an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案