給出如下四個命題:
①方程x2+y2-2x+1=0表示的圖形是圓;
②若橢圓的離心率為
2
2
,則兩個焦點與短軸的兩個端點構(gòu)成正方形;
③拋物線x=2y2的焦點坐標為(
1
8
,0
);
④雙曲線
y2
49
-
x2
25
=1的漸近線方程為y=±
5
7
x.
其中正確命題的序號是______.
對①,(x-1)2+y2=0,∴x=1,y=0,
即表示點(1,0).
對②,若e=
c
a
=
2
2
,則b=C、
∴兩焦點與短軸兩端點構(gòu)成正方形.
對③,拋物線方程為y2=
1
2
x,其焦點坐標為(
1
8
,0)

對④,雙曲線
y2
49
-
x2
25
=1的漸近線方程為
y
7
±
x
5
=0,
即y=±
7
5
x.
故答案為 ②③
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知動點P在橢圓
x2
25
+
y2
16
=1上,若A點坐標為(3,0),且|
AM
|=1,且
PM
AM
=0,則|
PM
|的最小值是( 。
A.
2
B.
3
C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過橢圓
x2
2
+
y2
3
=1的下焦點,且與圓x2+y2-3x+y+
3
2
=0相切的直線的斜率是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點為F,C為橢圓短軸上的端點,向量
FC
繞F點順時針旋轉(zhuǎn)90°后得到向量
FC′
,其中C′
點恰好落在橢圓右準線上,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點F到過頂點A(-a,0)、B(0,b)的直線的距離等于
7
7
b
,則橢圓的離心率為( 。
A.
1
2
B.
4
5
C.
7-
7
6
D.
7
7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點為F1(-c,0)、F2(c,0),M是橢圓上一點,且滿足
F1M
F2M
=0

(1)求離心率e的取值范圍;
(2)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為5
2
,求此時橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線y2=4x的焦點F與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點重合,它們在第一象限內(nèi)的交點為T,且TF與x軸垂直,則橢圓的離心率為( 。
A.
3
-
2
B.
2
-1
C.
1
2
D.
2
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的焦點在x軸上,一個頂點的坐標是(0,1),離心率等于
2
5
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A,B兩點,交y軸于M點,若
MA
=λ1
AF
MB
=λ2
BF
,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

巳知中心在坐標原點的雙曲線C與拋物線x2="2py(p" >0)有相同的焦點F,點A是兩曲線的交點,且AF丄y軸,則雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案