橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點為F1(-c,0)、F2(c,0),M是橢圓上一點,且滿足
F1M
F2M
=0

(1)求離心率e的取值范圍;
(2)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為5
2
,求此時橢圓的方程.
(1)設(shè)點M的坐標為(x,y),則
F1M
=(x+c,y)
,
F2M
=(x-c,y)

F1M
F2M
=0
,得x2-c2+y2=0,即x2-c2=-y2.①
又由點M在橢圓上,得y2=b2-
b2
a2
x2
,
代入①,得x2-c2=
b2
a2
x2-b2
,即x2=a2-
a2b2
c2

∵0≤x2≤a2,∴0≤a2-
a2b2
c2
≤a2,即0≤
a2-c2
c2
≤1,0≤
1
e2
-1
≤1,
解得
2
2
≤e<1.
又∵0<e<1,
2
2
≤e<1.…8分
(2)當離心率e取最小值
2
2
時,橢圓方程可表示為
x2
2b2
+
y2
b2
=1

設(shè)點H(x,y)是橢圓上的一點,則
|HN|2=x2+(y-3)2=(2b2-2y2)+(y-3)2=-(y+3)2+2b2+18(-b≤y≤b).
若0<b<3,則0>-b>-3,當y=-b時,|HN|2有最大值b2+6b+9.
由題意知:b2+6b+9=50,b=5
2
-3
或b=-5
2
-3
,這與0<b<3矛盾.
若b≥3,則-b≤-3,當y=-3時,|HN|2有最大值2b2+18.
由題意知:2b2+18=50,b2=16,
∴所求橢圓方程為
x2
32
+
y2
16
=1
.…16分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標系中,已知△ABC的頂點A(-5,0),B(5,0)且頂點C在橢圓
x2
169
+
y2
144
=1
上,則
sinA+sinB
sinC
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,面ABC⊥α,D為AB的中點,|AB|=2,∠CDB=60°,P為α內(nèi)的動點,且P到直線CD的距離為
3
,則∠APB的最大值為(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定點N(1,0),動點A、B分別在圖中拋物線y2=4x及橢圓
x2
4
+
y2
3
=1
的實線部分上運動,且ABx軸,則△NAB的周長l取值范圍是( 。
A.(
2
3
,2
B.(
10
3
,4
C.(
51
16
,4
D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出如下四個命題:
①方程x2+y2-2x+1=0表示的圖形是圓;
②若橢圓的離心率為
2
2
,則兩個焦點與短軸的兩個端點構(gòu)成正方形;
③拋物線x=2y2的焦點坐標為(
1
8
,0
);
④雙曲線
y2
49
-
x2
25
=1的漸近線方程為y=±
5
7
x.
其中正確命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1、F2是橢圓C:
x2
4
+y2=1
的兩個焦點,P為橢圓C在第一象限上的一點,且
PF1
PF2
.則P到x=
5
3
3
的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線;命題q:過點M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點,若p與q中有且僅有一個為真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l與橢圓
x2
4
+
y2
3
=1
相交于兩點A,B,弦AB的中點為(-1,1),則直線l的方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與曲線的交點個數(shù)為(    )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案