11.下列結(jié)論正確的是( 。
A.若ac>bc,則a>bB.若a2>b2,則a>b
C.若a>b,c<0,則a+c<b+cD.若$\sqrt{a}$<$\sqrt$,則a<b

分析 根據(jù)不等式的性質(zhì)分別判斷即可

解答 解:當(dāng)c<0時(shí),A選項(xiàng)不正確;
當(dāng)a<0時(shí),B選項(xiàng)不正確;
兩邊同時(shí)加上一個(gè)數(shù),不等號(hào)方向不改變,故C選項(xiàng)錯(cuò)誤.
所以選D.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì),屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.?dāng)?shù)列{an}滿足an+1=$\frac{1}{2}$an+1,a1=1,若bn=an-2.
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}的公差d=2,等比數(shù)列{bn}滿足b1=a1,b2=a4,b3=a13
(1)求{an}的通項(xiàng)公式;
(2)求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,設(shè)ox,oy是平面內(nèi)相交成θ°的兩條數(shù)軸,$\overrightarrow{e_1}$,$\overrightarrow{e_2}$分別是與ox,oy正方向同向的單位向量,若向量$\overrightarrow{op}=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,則把有序?qū)崝?shù)對(duì)(x,y)叫做向量$\overrightarrow{op}$的θ°坐標(biāo),記作$\overrightarrow{op}$(θ°)=(x,y);當(dāng)θ=90°時(shí),稱(x,y)為$\overrightarrow{op}$的正交坐標(biāo).
(1)若$\overrightarrow{op}$(45°)=(-2,2$\sqrt{2}$),求$\overrightarrow{|{op}|}$;
(2)若$\overrightarrow{oM}$的正交坐標(biāo)為(2,$\sqrt{3}$),求$\overrightarrow{oM}$(60°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某學(xué)校為了了解該校學(xué)生對(duì)于某項(xiàng)運(yùn)動(dòng)的愛好是否與性別有關(guān),通過隨機(jī)抽查110名學(xué)生,得到如下2×2的列聯(lián)表:
喜歡該項(xiàng)運(yùn)動(dòng)不喜歡該項(xiàng)運(yùn)動(dòng)總計(jì)
402060
203050
總計(jì)6050110
由公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,算得K2≈7.61
附表:
p(K2≥k00.0250.010.005
k05.0246.6357.879
參照附表,以下結(jié)論正確是( 。
A.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在某次測(cè)試后,一位老師從本班48同學(xué)中隨機(jī)抽取6位同學(xué),他們的語(yǔ)文、歷史成績(jī)?nèi)绫恚?br />
學(xué)生編號(hào)123456
語(yǔ)文成績(jī)x6070749094110
歷史成績(jī)y586375798188
(1)若規(guī)定語(yǔ)文成績(jī)不低于90分為優(yōu)秀,歷史成績(jī)不低于80分為優(yōu)秀,以頻率作概率,分別估計(jì)該班語(yǔ)文、歷史成績(jī)優(yōu)秀的人數(shù);
(2)用上表數(shù)據(jù)畫出散點(diǎn)圖易發(fā)現(xiàn)歷史成績(jī)y與語(yǔ)文成績(jī)x具有較強(qiáng)的線性相關(guān)關(guān)系,求y與x的線性回歸方程(系數(shù)精確到0.1).參考公式:回歸直線方程是y=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC中,角A、B、C的對(duì)邊分別為a、b、c,a=2,C=$\frac{π}{3}$.
(1)若$A=\frac{π}{4}$,求c;
(2)若△ABC的面積$S=\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若集合A={-2,-1,0,1,2},集合B={x|x(x+3)<0},則A∩B等于( 。
A.{-1,0,1,2}B.{-2,-1}C.{1,2}D.{0,1,2}

查看答案和解析>>

同步練習(xí)冊(cè)答案